Art of Problem Solving

AoPS Community

CentroAmerican 2013

www.artofproblemsolving.com/community/c4569
by fprosk

Day 1

1 Juan writes the list of pairs $\left(n, 3^{n}\right)$, with $n=1,2,3, \ldots$ on a chalkboard. As he writes the list, he underlines the pairs ($n, 3^{n}$) when n and 3^{n} have the same units digit. What is the $2013^{t h}$ underlined pair?

2 Around a round table the people $P_{1}, P_{2}, \ldots, P_{2013}$ are seated in a clockwise order. Each person starts with a certain amount of coins (possibly none); there are a total of 10000 coins. Starting with P_{1} and proceeding in clockwise order, each person does the following on their turn:
-If they have an even number of coins, they give all of their coins to their neighbor to the left.
-If they have an odd number of coins, they give their neighbor to the left an odd number of coins (at least 1 and at most all of their coins) and keep the rest.
Prove that, repeating this procedure, there will necessarily be a point where one person has all of the coins.

3 Let $A B C D$ be a convex quadrilateral and let M be the midpoint of side $A B$. The circle passing through D and tangent to $A B$ at A intersects the segment $D M$ at E. The circle passing through C and tangent to $A B$ at B intersects the segment $C M$ at F. Suppose that the lines $A F$ and $B E$ intersect at a point which belongs to the perpendicular bisector of side $A B$. Prove that A, E, and C are collinear if and only if B, F, and D are collinear.

Day 2

1 Ana and Beatriz take turns in a game that starts with a square of side 1 drawn on an infinite grid. Each turn consists of drawing a square that does not overlap with the rectangle already drawn, in such a way that one of its sides is a (complete) side of the figure already drawn. A player wins if she completes a rectangle whose area is a multiple of 5 . If Ana goes first, does either player have a winning strategy?

2 Let $A B C$ be an acute triangle and let Γ be its circumcircle. The bisector of $\angle A$ intersects $B C$ at D, Γ at K (different from A), and the line through B tangent to Γ at X. Show that K is the midpoint of $A X$ if and only if $\frac{A D}{D C}=\sqrt{2}$.

3 Determine all pairs of non-constant polynomials $p(x)$ and $q(x)$, each with leading coefficient 1, degree n, and n roots which are non-negative integers, that satisfy $p(x)-q(x)=1$.

