AoPS Community

Bulgaria National Olympiad 1999

www.artofproblemsolving.com/community/c4573
by Faustus, elegant

Day 1

1 The faces of a box with integer edge lengths are painted green. The box is partitioned into unit cubes. Find the dimensions of the box if the number of unit cubes with no green face is one third of the total number of cubes.

2 Let $\left\{a_{n}\right\}$ be a sequence of integers satisfying $(n-1) a_{n+1}=(n+1) a_{n}-2(n-1) \forall n \geq 1$. If $2000 \mid a_{1999}$, find the smallest $n \geq 2$ such that $2000 \mid a_{n}$.

3 The vertices of a triangle have integer coordinates and one of its sides is of length \sqrt{n}, where n is a square-free natural number. Prove that the ratio of the circumradius and the inradius is an irrational number.

Day 2

1 Find the number of all integers n with $4 \leq n \leq 1023$ which contain no three consecutive equal digits in their binary representations.

2 The vertices A, B, C of an acute-angled triangle $A B C$ lie on the sides $B 1 C 1, C 1 A 1, A 1 B 1$ respectively of a triangle $A 1 B 1 C 1$ similar to the triangle $A B C(A=A 1$, etc.). Prove that the orthocenters of triangles $A B C$ and $A 1 B 1 C 1$ are equidistant from the circumcenter of $A B C$.
$3 \quad$ Prove that $x^{3}+y^{3}+z^{3}+t^{3}=1999$ has infinitely many soln. over \mathbb{Z}.

