AoPS Community

2016 Iranian Geometry Olympiad

Iranian Geometry Olympiad 2016

www.artofproblemsolving.com/community/c457380
by Snakes, parmenides51, cjquines0, MRF2017

- Elementary

1 Ali wants to move from point A to point B. He cannot walk inside the black areas but he is free to move in any direction inside the white areas (not only the grid lines but the whole plane). Help Ali to find the shortest path between A and B. Only draw the path and write its length. https://1.bp.blogspot.com/-nZrxJLfIAp8/W1RyCdnh13I/AAAAAAAAIzQ/NM3t5EtJWMcWQSOig0IghSo54I s1600/igo\%2B2016.el1.png
by Morteza Saghafian
2 Let ω be the circumcircle of triangle $A B C$ with $A C>A B$. Let X be a point on $A C$ and Y be a point on the circle ω, such that $C X=C Y=A B$. (The points A and Y lie on different sides of the line $B C$). The line $X Y$ intersects ω for the second time in point P. Show that $P B=P C$.
by Iman Maghsoudi
3 Suppose that $A B C D$ is a convex quadrilateral with no parallel sides. Make a parallelogram on each two consecutive sides. Show that among these 4 new points, there is only one point inside the quadrilateral $A B C D$.

by Morteza Saghafian

4 In a right-angled triangle $A B C\left(\angle A=90^{\circ}\right)$, the perpendicular bisector of $B C$ intersects the line $A C$ in K and the perpendicular bisector of $B K$ intersects the line $A B$ in L. If the line $C L$ be the internal bisector of angle C, find all possible values for angles B and C.
by Mahdi Etesami Fard
5 Let $A B C D$ be a convex quadrilateral with these properties: $\angle A D C=135^{\circ}$ and $\angle A D B-\angle A B D=$ $2 \angle D A B=4 \angle C B D$.
If $B C=\sqrt{2} C D$, prove that $A B=B C+A D$.
by Mahdi Etesami Fard

- Medium

1 In trapezoid $A B C D$ with $A B \| C D, \omega_{1}$ and ω_{2} are two circles with diameters $A D$ and $B C$, respectively. Let X and Y be two arbitrary points on ω_{1} and ω_{2}, respectively. Show that the length of segment $X Y$ is not more than half the perimeter of $A B C D$.
Proposed by Mahdi Etesami Fard

2 Let two circles C_{1} and C_{2} intersect in points A and B. The tangent to C_{1} at A intersects C_{2} in P and the line $P B$ intersects C_{1} for the second time in Q (suppose that Q is outside C_{2}). The tangent to C_{2} from Q intersects C_{1} and C_{2} in C and D, respectively. (The points A and D lie on different sides of the line $P Q$.) Show that $A D$ is the bisector of $\angle C A P$.
Proposed by Iman Maghsoudi
3 Find all positive integers N such that there exists a triangle which can be dissected into N similar quadrilaterals.
Proposed by Nikolai Beluhov (Bulgaria) and Morteza Saghafian
4 Let ω be the circumcircle of right-angled triangle $A B C\left(\angle A=90^{\circ}\right)$. The tangent to ω at point A intersects the line $B C$ at point P. Suppose that M is the midpoint of the minor arc $A B$, and $P M$ intersects ω for the second time in Q. The tangent to ω at point Q intersects $A C$ at K. Prove that $\angle P K C=90^{\circ}$.
Proposed by Davood Vakili
$5 \quad$ Let the circles ω and ω^{\prime} intersect in points A and B. The tangent to circle ω at A intersects ω^{\prime} at C and the tangent to circle ω^{\prime} at A intersects ω at D. Suppose that the internal bisector of $\angle C A D$ intersects ω and ω^{\prime} at E and F, respectively, and the external bisector of $\angle C A D$ intersects ω and ω^{\prime} at X and Y, respectively. Prove that the perpendicular bisector of $X Y$ is tangent to the circumcircle of triangle $B E F$.

Proposed by Mahdi Etesami Fard

- Advanced

1 Let the circles ω and ω^{\prime} intersect in A and B. Tangent to circle ω at A intersects ω^{\prime} in C and tangent to circle ω^{\prime} at A intersects ω in D. Suppose that $C D$ intersects ω and ω^{\prime} in E and F, respectively (assume that E is between F and C). The perpendicular to $A C$ from E intersects ω^{\prime} in point P and perpendicular to $A D$ from F intersects ω in point Q (The points A, P and Q lie on the same side of the line $C D$). Prove that the points A, P and Q are collinear.
Proposed by Mahdi Etesami Fard
2 In acute-angled triangle $A B C$, altitude of A meets $B C$ at D, and M is midpoint of $A C$. Suppose that X is a point such that $\measuredangle A X B=\measuredangle D X M=90^{\circ}$ (assume that X and C lie on opposite sides of the line $B M$). Show that $\measuredangle X M B=2 \measuredangle M B C$.Proposed by Davood Vakili

3 In a convex qualrilateral $A B C D$, let P be the intersection point of $A D$ and $B C$. Suppose that I_{1} and I_{2} are the incenters of triangles $P A B$ and $P D C$,respectively. Let O be the circumcenter of $P A B$, and H the orthocenter of $P D C$. Show that the circumcircles of triangles $A I_{1} B$ and $D H C$ are tangent together if and only if the circumcircles of triangles $A O B$ and $D I_{2} C$ are tangent
together.
Proposed by Hooman Fattahimoghaddam
4 In a convex quadrilateral $A B C D$, the lines $A B$ and $C D$ meet at point E and the lines $A D$ and $B C$ meet at point F. Let P be the intersection point of diagonals $A C$ and $B D$. Suppose that ω_{1} is a circle passing through D and tangent to $A C$ at P. Also suppose that ω_{2} is a circle passing through C and tangent to $B D$ at P. Let X be the intersection point of ω_{1} and $A D$, and Y be the intersection point of ω_{2} and $B C$. Suppose that the circles ω_{1} and ω_{2} intersect each other in Q for the second time. Prove that the perpendicular from P to the line $E F$ passes through the circumcenter of triangle $X Q Y$.
Proposed by Iman Maghsoudi
5 Do there exist six points $X_{1}, X_{2}, Y_{1}, Y_{2}, Z_{1}, Z_{2}$ in the plane such that all of the triangles $X_{i} Y_{j} Z_{k}$ are similar for $1 \leq i, j, k \leq 2$?
Proposed by Morteza Saghafian

