Art of Problem Solving

AoPS Community

Bulgaria National Olympiad 2000

www.artofproblemsolving.com/community/c4574
by odnerpmocon, ComplexPhi, Umut Varolgunes, ShahinBJK, cauchyguy

Day 1

1 In the coordinate plane, a set of 2000 points $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{2000}, y_{2000}\right)\right\}$ is called good if $0 \leq x_{i} \leq 83,0 \leq y_{i} \leq 83$ for $i=1,2, \ldots, 2000$ and $x_{i} \neq x_{j}$ when $i \neq j$. Find the largest positive integer n such that, for any good set, the interior and boundary of some unit square contains exactly n of the points in the set on its interior or its boundary.

2 Let be given an acute triangle $A B C$. Show that there exist unique points $A_{1} \in B C, B_{1} \in C A$, $C_{1} \in A B$ such that each of these three points is the midpoint of the segment whose endpoints are the orthogonal projections of the other two points on the corresponding side. Prove that the triangle $A_{1} B_{1} C_{1}$ is similar to the triangle whose side lengths are the medians of $\triangle A B C$.

3 Let p be a prime number and let $a_{1}, a_{2}, \ldots, a_{p-2}$ be positive integers such that p doesn't a_{k} or $a_{k}{ }^{k}-1$ for any k. Prove that the product of some of the a_{i} 's is congruent to 2 modulo p.

Day 2

1 Find all polynomials $P(x)$ with real coefficients such that

$$
P(x) P(x+1)=P\left(x^{2}\right), \quad \forall x \in \mathbb{R} .
$$

2 Let D be the midpoint of the base $A B$ of the isosceles acute triangle $A B C$. Choose point E on segment $A B$, and let O be the circumcenter of triangle $A C E$. Prove that the line through D perpendicular to $D O$, the line through E perpendicular to $B C$, and the line through B parallel to $A C$ are concurrent.

3 Let A be the set of all binary sequences of length n and denote $o=(0,0, \ldots, 0) \in A$. Define the addition on A as $\left(a_{1}, \ldots, a_{n}\right)+\left(b_{1}, \ldots, b_{n}\right)=\left(c_{1}, \ldots, c_{n}\right)$, where $c_{i}=0$ when $a_{i}=b_{i}$ and $c_{i}=1$ otherwise. Suppose that $f: A \rightarrow A$ is a function such that $f(0)=0$, and for each $a, b \in A$, the sequences $f(a)$ and $f(b)$ differ in exactly as many places as a and b do. Prove that if $a, b, c \in A$ satisfy $a+b+c=0$, then $f(a)+f(b)+f(c)=0$.

