AoPS Community

Bulgaria National Olympiad 2001

www.artofproblemsolving.com/community/c4575
by supercomputer, ATimo, Altunshukurlu, ComplexPhi, RDeepMath91

Day 1

1 Consider the sequence $\left\{a_{n}\right\}$ such that $a_{0}=4, a_{1}=22$, and $a_{n}-6 a_{n-1}+a_{n-2}=0$ for $n \geq 2$. Prove that there exist sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ of positive integers such that

$$
a_{n}=\frac{y_{n}^{2}+7}{x_{n}-y_{n}}
$$

for any $n \geq 0$.
2 Suppose that $A B C D$ is a parallelogram such that $D A B>90$. Let the point H to be on $A D$ such that $B H$ is perpendicular to $A D$. Let the point M to be the midpoint of $A B$. Let the point K to be the intersecting point of the line $D M$ with the circumcircle of $A D B$. Prove that $H K C D$ is concyclic.

3 Given a permutation $\left(a_{1}, a_{1}, \ldots, a_{n}\right)$ of the numbers $1,2, \ldots, n$ one may interchange any two consecutive "blocks" - that is, one may transform
$(a_{1}, a_{2}, \ldots, a_{i}, \underbrace{a_{i+1}, \ldots a_{i+p}}_{A}, \underbrace{a_{i+p+1}, \ldots, a_{i+q}}_{B}, \ldots, a_{n})$
into $(a_{1}, a_{2}, \ldots, a_{i}, \underbrace{a_{i+p+1}, \ldots, a_{i+q}}_{B}, \underbrace{a_{i+1}, \ldots a_{i+p}}_{A}, \ldots, a_{n})$
by interchanging the "blocks" A and B. Find the least number of such changes which are needed to transform ($n, n-1, \ldots, 1$) into $(1,2, \ldots, n)$

Day 2

1 Let $n \geq 2$ be a given integer. At any point (i, j) with $i, j \in \mathbb{Z}$ we write the remainder of $i+j$ modulo n. Find all pairs (a, b) of positive integers such that the rectangle with vertices $(0,0)$, $(a, 0),(a, b),(0, b)$ has the following properties:
(i) the remainders $0,1, \ldots, n-1$ written at its interior points appear the same number of times; (ii) the remainders $0,1, \ldots, n-1$ written at its boundary points appear the same number of times.

2 Find all real values t for which there exist real numbers x, y, z satisfying: $3 x^{2}+3 x z+z^{2}=1$, $3 y^{2}+3 y z+z^{2}=4$, $x^{2}-x y+y^{2}=t$.

3 Let p be a prime number congruent to 3 modulo 4 , and consider the equation $(p+2) x^{2}-(p+$ 1) $y^{2}+p x+(p+2) y=1$.

Prove that this equation has infinitely many solutions in positive integers, and show that if $(x, y)=\left(x_{0}, y_{0}\right)$ is a solution of the equation in positive integers, then $p \mid x_{0}$.

