

AoPS Community

2004 Bulgaria National Olympiad

Bulgaria National Olympiad 2004

www.artofproblemsolving.com/community/c4578 by Valentin Vornicu, grobber

Day 1

- 1 Let *I* be the incenter of triangle *ABC*, and let A_1 , B_1 , C_1 be arbitrary points on the segments (AI), (BI), (CI), respectively. The perpendicular bisectors of AA_1 , BB_1 , CC_1 intersect each other at A_2 , B_2 , and C_2 . Prove that the circumcenter of the triangle $A_2B_2C_2$ coincides with the circumcenter of the triangle *ABC* if and only if *I* is the orthocenter of triangle $A_1B_1C_1$.
- **2** For any positive integer *n* the sum $1 + \frac{1}{2} + \dots + \frac{1}{n}$ is written in the form $\frac{P(n)}{Q(n)}$, where P(n) and Q(n) are relatively prime.

a) Prove that P(67) is not divisible by 3;

- b) Find all possible n, for which P(n) is divisible by 3.
- **3** A group consist of n tourists. Among every 3 of them there are 2 which are not familiar. For every partition of the tourists in 2 buses you can find 2 tourists that are in the same bus and are familiar with each other. Prove that is a tourist familiar to at most $\frac{2}{5}n$ tourists.

Day 2	
4	In a word formed with the letters a, b we can change some blocks: aba in b and back, bba in a and backwards. If the initial word is $aaa \dots ab$ where a appears 2003 times can we reach the word $baaa \dots a$, where a appears 2003 times.
5	Let a, b, c, d be positive integers such that the number of pairs $(x, y) \in (0, 1)^2$ such that both $ax + by$ and $cx + dy$ are integers is equal with 2004. If $gcd(a, c) = 6$ find $gcd(b, d)$.
6	Let <i>p</i> be a prime number and let $0 \le a_1 < a_2 < \cdots < a_m < p$ and $0 \le b_1 < b_2 < \cdots < b_n < p$ be arbitrary integers. Let <i>k</i> be the number of distinct residues modulo <i>p</i> that $a_i + b_j$ give when <i>i</i> runs from 1 to <i>m</i> , and <i>j</i> from 1 to <i>n</i> . Prove that a) if $m + n > p$ then $k = p$;
	b) if $m + n < p$ then $k > m + n - 1$.

🐼 AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.