AoPS Community

Bulgaria National Olympiad 2004

www.artofproblemsolving.com/community/c4578
by Valentin Vornicu, grobber

Day 1

1 Let I be the incenter of triangle $A B C$, and let A_{1}, B_{1}, C_{1} be arbitrary points on the segments $(A I),(B I),(C I)$, respectively. The perpendicular bisectors of $A A_{1}, B B_{1}, C C_{1}$ intersect each other at A_{2}, B_{2}, and C_{2}. Prove that the circumcenter of the triangle $A_{2} B_{2} C_{2}$ coincides with the circumcenter of the triangle $A B C$ if and only if I is the orthocenter of triangle $A_{1} B_{1} C_{1}$.

2 For any positive integer n the sum $1+\frac{1}{2}+\cdots+\frac{1}{n}$ is written in the form $\frac{P(n)}{Q(n)}$, where $P(n)$ and $Q(n)$ are relatively prime.
a) Prove that $P(67)$ is not divisible by 3 ;
b) Find all possible n, for which $P(n)$ is divisible by 3 .

3 A group consist of n tourists. Among every 3 of them there are 2 which are not familiar. For every partition of the tourists in 2 buses you can find 2 tourists that are in the same bus and are familiar with each other. Prove that is a tourist familiar to at most $\frac{2}{5} n$ tourists.

Day 2

4 In a word formed with the letters a, b we can change some blocks: $a b a$ in b and back, $b b a$ in a and backwards. If the initial word is $a a a \ldots a b$ where a appears 2003 times can we reach the word baaa ... a, where a appears 2003 times.

5 Let a, b, c, d be positive integers such that the number of pairs $(x, y) \in(0,1)^{2}$ such that both $a x+b y$ and $c x+d y$ are integers is equal with 2004. If $\operatorname{gcd}(a, c)=6$ find $\operatorname{gcd}(b, d)$.

6 Let p be a prime number and let $0 \leq a_{1}<a_{2}<\cdots<a_{m}<p$ and $0 \leq b_{1}<b_{2}<\cdots<b_{n}<p$ be arbitrary integers. Let k be the number of distinct residues modulo p that $a_{i}+b_{j}$ give when i runs from 1 to m, and j from 1 to n. Prove that
a) if $m+n>p$ then $k=p$;
b) if $m+n \leq p$ then $k \geq m+n-1$.

