Art of Problem Solving

AoPS Community

Bulgaria National Olympiad 2005

www.artofproblemsolving.com/community/c4579
by erdos, ali

Day 1 May 14th
1 Determine all triples (x, y, z) of positive integers for which the number

$$
\sqrt{\frac{2005}{x+y}}+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{z+x}}
$$

is an integer .
2 Consider two circles k_{1}, k_{2} touching externally at point T. a line touches k_{2} at point X and intersects k_{1} at points A and B. Let S be the second intersection point of k_{1} with the line $X T$. On the arc $\widehat{T S}$ not containing A and B is chosen a point C. Let $C Y$ be the tangent line to k_{2} with $Y \in k_{2}$, such that the segment $C Y$ does not intersect the segment $S T$. If $I=X Y \cap S C$. Prove that :
(a) the points C, T, Y, I are concyclic.
(b) I is the excenter of triangle $A B C$ with respect to the side $B C$.

3 Let $M=(0,1) \cap \mathbb{Q}$. Determine, with proof, whether there exists a subset $A \subset M$ with the property that every number in M can be uniquely written as the sum of finitely many distinct elements of A.

Day 2 May 15th
4 Let $A B C$ be a triangle with $A C \neq B C$, and let $A^{\prime} B^{\prime} C$ be a triangle obtained from $A B C$ after some rotation centered at C. Let M, E, F be the midpoints of the segments $B A^{\prime}, A C$ and $C B^{\prime}$ respectively. If $E M=F M$, find $\widehat{E M F}$.

5 For positive integers $t, a, b, \mathbf{a}(t, a, b)$-game is a two player game defined by the following rules. Initially, the number t is written on a blackboard. At his first move, the 1 st player replaces t with either $t-a$ or $t-b$. Then, the 2 nd player subtracts either a or b from this number, and writes the result on the blackboard, erasing the old number. After this, the first player once again erases either a or b from the number written on the blackboard, and so on. The player who first reaches a negative number loses the game. Prove that there exist infinitely many values of t for which the first player has a winning strategy for all pairs (a, b) with $a+b=2005$.
$6 \quad$ Let a, b and c be positive integers such that $a b$ divides $c\left(c^{2}-c+1\right)$ and $a+b$ is divisible by $c^{2}+1$.
Prove that the sets $\{a, b\}$ and $\left\{c, c^{2}-c+1\right\}$ coincide.

