

AoPS Community

Bulgaria National Olympiad 2006

www.artofproblemsolving.com/community/c4580 by bilarev, imortal

Day 1

1	Consider the set $A = \{1, 2, 3, 2^n\}, n \ge 2$. Find the number of subsets B of A such that for any two elements of A whose sum is a power of 2 exactly one of them is in B .
	Aleksandar Ivanov
2	Let $f : \mathbb{R}^+ \to \mathbb{R}^+$ be a function that satisfies for all $x > y > 0$
	$f(x+y) - f(x-y) = 4\sqrt{f(x)f(y)}$
	a) Prove that $f(2x) = 4f(x)$ for all $x > 0$; b) Find all such functions.
	Nikolai Nikolov, Oleg Mushkarov
3	The natural numbers are written in sequence, in increasing order, and by this we get an infinite sequence of digits. Find the least natural k , for which among the first k digits of this sequence, any two nonzero digits have been written a different number of times.
	Aleksandar Ivanov, Emil Kolev
Day 2	
1	Let p be a prime such that p^2 divides $2^{p-1} - 1$. Prove that for all positive integers n the number $(p-1)(p!+2^n)$ has at least 3 different prime divisors.
	Aleksandar Ivanov
2	The triangle <i>ABC</i> is such that $\angle BAC = 30^{\circ}$, $\angle ABC = 45^{\circ}$. Prove that if <i>X</i> lies on the ray <i>AC</i> , <i>Y</i> lies on the ray <i>BC</i> and <i>OX</i> = <i>BY</i> , where <i>O</i> is the circumcentre of triangle <i>ABC</i> , then <i>S</i> _{<i>XY</i>} passes through a fixed point.
	Emil Kolev
3	Consider a point <i>O</i> in the plane. Find all sets <i>S</i> of at least two points in the plane such that if $A \in S$ ad $A \neq O$, then the circle with diameter <i>OA</i> is in <i>S</i> .
	Nikolai Nikolov, Slavomir Dinev

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱