Art of Problem Solving

AoPS Community

Bulgaria National Olympiad 2007

www.artofproblemsolving.com/community/c4581
by bilarev

Day 1

1 The quadrilateral $A B C D$, where $\angle B A D+\angle A D C>\pi$, is inscribed a circle with centre I. A line through I intersects $A B$ and $C D$ in points X and Y respectively such that $I X=I Y$. Prove that $A X \cdot D Y=B X \cdot C Y$.

2 Find the greatest positive integer n such that we can choose 2007 different positive integers from $\left[2 \cdot 10^{n-1}, 10^{n}\right.$) such that for each two $1 \leq i<j \leq n$ there exists a positive integer $\overline{a_{1} a_{2} \ldots a_{n}}$ from the chosen integers for which $a_{j} \geq a_{i}+2$.

A. Ivanov, E. Kolev

$3 \quad$ Find the least positive integer n such that $\cos \frac{\pi}{n}$ cannot be written in the form $p+\sqrt{q}+\sqrt[3]{r}$ with $p, q, r \in \mathbb{Q}$.
O. Mushkarov, N. Nikolov

No-one in the competition scored more than 2 points

Day 2

1 Let $k>1$ be a given positive integer. A set S of positive integers is called good if we can colour the set of positive integers in k colours such that each integer of S cannot be represented as sum of two positive integers of the same colour. Find the greatest t such that the set $S=$ $\{a+1, a+2, \ldots, a+t\}$ is good for all positive integers a.

A. Ivanov, E. Kolev

2 Find the least real number m such that with all 5 equilaterial triangles with sum of areas m we can cover an equilaterial triangle with side 1.

O. Mushkarov, N. Nikolov

3 Let $P(x) \in \mathbb{Z}[x]$ be a monic polynomial with even degree. Prove that, if for infinitely many integers x, the number $P(x)$ is a square of a positive integer, then there exists a polynomial $Q(x) \in \mathbb{Z}[x]$ such that $P(x)=Q(x)^{2}$.

