

AoPS Community

2007 Bulgaria National Olympiad

Bulgaria National Olympiad 2007

www.artofproblemsolving.com/community/c4581 by bilarev

Day 1

1	The quadrilateral $ABCD$, where $\angle BAD + \angle ADC > \pi$, is inscribed a circle with centre <i>I</i> . A line through <i>I</i> intersects <i>AB</i> and <i>CD</i> in points <i>X</i> and <i>Y</i> respectively such that $IX = IY$. Prove that $AX \cdot DY = BX \cdot CY$.
2	Find the greatest positive integer n such that we can choose 2007 different positive integers from $[2 \cdot 10^{n-1}, 10^n)$ such that for each two $1 \le i < j \le n$ there exists a positive integer $\overline{a_1 a_2 \dots a_n}$ from the chosen integers for which $a_j \ge a_i + 2$. <i>A. Ivanov, E. Kolev</i>
3	Find the least positive integer n such that $\cos \frac{\pi}{n}$ cannot be written in the form $p + \sqrt{q} + \sqrt[3]{r}$ with $p, q, r \in \mathbb{Q}$.
	O. Mushkarov, N. Nikolov
	No-one in the competition scored more than 2 points
Day 2	2
1	Let $k > 1$ be a given positive integer. A set S of positive integers is called <i>good</i> if we can colour the set of positive integers in k colours such that each integers of S cannot be represented as

the set of positive integers in k colours such that each integer of S cannot be represented as sum of two positive integers of the same colour. Find the greatest t such that the set $S = \{a+1, a+2, ..., a+t\}$ is good for all positive integers a.

A. Ivanov, E. Kolev

2 Find the least real number *m* such that with all 5 equilaterial triangles with sum of areas *m* we can cover an equilaterial triangle with side 1.

O. Mushkarov, N. Nikolov

3 Let $P(x) \in \mathbb{Z}[x]$ be a monic polynomial with even degree. Prove that, if for infinitely many integers x, the number P(x) is a square of a positive integer, then there exists a polynomial $Q(x) \in \mathbb{Z}[x]$ such that $P(x) = Q(x)^2$.

🟟 AoPS Online 🔯 AoPS Academy 🐲 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.