Art of Problem Solving

AoPS Community

Bulgaria National Olympiad 2010

www.artofproblemsolving.com/community/c4583
by Amir Hossein, borislav_mirchev

Day 1

1 A table 2×2010 is divided to unit cells. Ivan and Peter are playing the following game. Ivan starts, and puts horizontal 2×1 domino that covers exactly two unit table cells. Then Peter puts vertical 1×2 domino that covers exactly two unit table cells. Then Ivan puts horizontal domino. Then Peter puts vertical domino, etc. The person who cannot put his domino will lose the game. Find who have winning strategy.

2 Each of two different lines parallel to the the axis $O x$ have exactly two common points on the graph of the function $f(x)=x^{3}+a x^{2}+b x+c$. Let ℓ_{1} and ℓ_{2} be two lines parallel to $O x$ axis which meet the graph of f in points K_{1}, K_{2} and K_{3}, K_{4}, respectively. Prove that the quadrilateral formed by K_{1}, K_{2}, K_{3} and K_{4} is a rhombus if and only if its area is equal to 6 units.

3 Let $a_{0}, a_{1}, \ldots, a_{9}$ and $b_{1}, b_{2}, \ldots, b_{9}$ be positive integers such that $a_{9}<b_{9}$ and $a_{k} \neq b_{k}, 1 \leq k \leq 8$. In a cash dispenser/automated teller machine/ATM there are $n \geq a_{9}$ levs (Bulgarian national currency) and for each $1 \leq i \leq 9$ we can take a_{i} levs from the ATM (if in the bank there are at least a_{i} levs). Immediately after that action the bank puts b_{i} levs in the ATM or we take a_{0} levs. If we take a_{0} levs from the ATM the bank doesnt put any money in the ATM. Find all possible positive integer values of n such that after finite number of takings money from the ATM there will be no money in it.

Day 2

1 Does there exist a number $n=\overline{a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}}$ such that $\overline{a_{1} a_{2} a_{3}}+4=\overline{a_{4} a_{5} a_{6}}$ (all bases are 10) and $n=a^{k}$ for some positive integers a, k with $k \geq 3$?
$2 \quad$ Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function such that $f(1)=1$ and

$$
f(n)=n-f(f(n-1)), \quad \forall n \geq 2 .
$$

Prove that $f(n+f(n))=n$ for each positive integer n.
3 Let k be the circumference of the triangle $A B C$. The point D is an arbitrary point on the segment $A B$. Let I and J be the centers of the circles which are tangent to the side $A B$, the segment $C D$ and the circle k. We know that the points A, B, I and J are concyclic. The excircle of the triangle $A B C$ is tangent to the side $A B$ in the point M. Prove that $M \equiv D$.

