AoPS Community

Flanders Math Olympiad 1986

www.artofproblemsolving.com/community/c4587
by parmenides51, Peter, Arne

1 A circle with radius R is divided into twelve equal parts. The twelve dividing points are connected with the centre of the circle, producing twelve rays. Starting from one of the dividing points a segment is drawn perpendicular to the next ray in the clockwise sense; from the foot of this perpendicular another perpendicular segment is drawn to the next ray, and the process is continued ad infinitum. What is the limit of the sum of these segments (in terms of R)? https://cdn.artofproblemsolving.com/attachments/2/6/83705b54ecc817b7d913468cd8467d7b8d9f\& png

2 Prove that for integer n we have:

$$
n!\leq\left(\frac{n+1}{2}\right)^{n}
$$

(please note that the pupils in the competition never heard of AM-GM or alikes, it is intended to be solved without any knowledge on inequalities)

3 Let $\left\{a_{k}\right\}_{k \geq 0}$ be a sequence given by $a_{0}=0, a_{k+1}=3 \cdot a_{k}+1$ for $k \in \mathbb{N}$.
Prove that $11 \mid a_{155}$
4 Given a cube in which you can put two massive spheres of radius 1.
What's the smallest possible value of the side - length of the cube?
Prove that your answer is the best possible.

