AoPS Community

Flanders Math Olympiad 1987

www.artofproblemsolving.com/community/c4588
by parmenides51, Peter

1 A rectangle $A B C D$ is given. On the side $A B, n$ different points are chosen strictly between A and B. Similarly, m different points are chosen on the side $A D$. Lines are drawn from the points parallel to the sides. How many rectangles are formed in this way? (One possibility is shown in the figure.)
https://cdn.artofproblemsolving.com/attachments/0/1/dcf48e4ce318fdcb8c7088a34fac226e26e2 png

2 Two parallel lines a and b meet two other lines c and d. Let A and A^{\prime} be the points of intersection of a with c and d, respectively. Let B and B^{\prime} be the points of intersection of b with c and d, respectively. If X is the midpoint of the line segment $A A^{\prime}$ and Y is the midpoint of the segment $B B^{\prime}$, prove that

$$
|X Y| \leq \frac{|A B|+\left|A^{\prime} B^{\prime}\right|}{2}
$$

3 Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x)^{3}=-\frac{x}{12} \cdot\left(x^{2}+7 x \cdot f(x)+16 \cdot f(x)^{2}\right), \forall x \in \mathbb{R} .
$$

4 Show that for $p>1$ we have

$$
\lim _{n \rightarrow+\infty} \frac{1^{p}+2^{p}+\ldots+(n-1)^{p}+n^{p}+(n-1)^{p}+\ldots+2^{p}+1^{p}}{n^{2}}=+\infty
$$

Find the limit if $p=1$.

