AoPS Community

Flanders Math Olympiad 1989

www.artofproblemsolving.com/community/c4590
by Peter

1 Show that every subset of $1,2, \ldots, 99,100$ with 55 elements contains at least 2 numbers with a difference of 9 .

2 When drawing all diagonals in a regular pentagon, one gets an smaller pentagon in the middle. What's the ratio of the areas of those pentagons?

3 Show that:

$$
\alpha= \pm \frac{\pi}{12}+k \cdot \frac{\pi}{2}(k \in \mathbb{Z}) \Longleftrightarrow|\tan \alpha|+|\cot \alpha|=4
$$

$4 \quad$ Let D be the set of positive reals different from 1 and let n be a positive integer.
If for $f: D \rightarrow \mathbb{R}$ we have $x^{n} f(x)=f\left(x^{2}\right)$,
and if $f(x)=x^{n}$ for $0<x<\frac{1}{1989}$ and for $x>1989$, then prove that $f(x)=x^{n}$ for all $x \in D$.

