AoPS Community

Flanders Math Olympiad 1990

www.artofproblemsolving.com/community/c4591
by parmenides51, Peter

1 On the standard unit circle, draw 4 unit circles with centers $[0,1],[1,0],[0,-1],[-1,0]$. You get a figure as below, find the area of the colored part.
https://cdn.artofproblemsolving.com/attachments/6/1/a479365778b8a1d10373a47a4f698150e063
png
$2 \quad$ Let a and b be two primes having at least two digits, such that $a>b$.
Show that

$$
240 \mid\left(a^{4}-b^{4}\right)
$$

and show that 240 is the greatest positive integer having this property.
3 We form a decimal code of 21 digits. the code may start with 0 . Determine the probability that the fragment 0123456789 appears in the code.
$4 \quad$ Let $f: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}$be a strictly decreasing function.
(a) Be a_{n} a sequence of strictly positive reals so that $\forall k \in \mathbb{N}_{0}: k \cdot f\left(a_{k}\right) \geq(k+1) \cdot f\left(a_{k+1}\right)$

Prove that a_{n} is ascending, that $\lim _{k \rightarrow+\infty} f\left(a_{k}\right)=0$ and that $\lim _{k \rightarrow+\infty} a_{k}=+\infty$
(b) Prove that there exist such a sequence $\left(a_{n}\right)$ in \mathbb{R}_{0}^{+}if you know $\lim _{x \rightarrow+\infty} f(x)=0$.

