AoPS Community

Flanders Math Olympiad 1991
www.artofproblemsolving.com/community/c4592
by Peter, Arne

1 Show that the number $111 \ldots 111$ with 1991 times the number 1 , is not prime.
2 (a) Show that for every $n \in \mathbb{N}$ there is exactly one $x \in \mathbb{R}^{+}$so that $x^{n}+x^{n+1}=1$. Call this x_{n}.
(b) Find $\lim _{n \rightarrow+\infty} x_{n}$.

3 Given $\triangle A B C$ equilateral, with $X \in[A, B]$. Then we define unique points Y, Z so that $Y \in[B, C]$, $Z \in[A, C], \Delta X Y Z$ equilateral.

If Area $(\triangle A B C)=2 \cdot \operatorname{Area}(\Delta X Y Z)$, find the ratio of $\frac{A X}{X B}, \frac{B Y}{Y C}, \frac{C Z}{Z A}$.
4 A word of length n that consists only of the digits 0 and 1 , is called a bit-string of length n. (For example, 000 and 01101 are bit-strings of length 3 and 5.) Consider the sequence $s(1), s(2), \ldots$ of bit-strings of length $n>1$ which is obtained as follows :
(1) $s(1)$ is the bit-string $00 \ldots 01$, consisting of $n-1$ zeros and a 1 ;
(2) $s(k+1)$ is obtained as follows :
(a) Remove the digit on the left of $s(k)$. This gives a bit-string t of length $n-1$.
(b) Examine whether the bit-string $t 1$ (length n, adding a 1 after t) is already in $\{s(1), s(2), \ldots, s(k)\}$.

If this is the not case, then $s(k+1)=t 1$. If this is the case then $s(k+1)=t 0$.
For example, if $n=3$ we get $: s(1)=001 \rightarrow s(2)=011 \rightarrow s(3)=111 \rightarrow s(4)=110 \rightarrow$ $s(5)=101 \rightarrow s(6)=010 \rightarrow s(7)=100 \rightarrow s(8)=000 \rightarrow s(9)=001 \rightarrow \ldots$

Suppose $N=2^{n}$.
Prove that the bit-strings $s(1), s(2), \ldots, s(N)$ of length n are all different.

