AoPS Community

Flanders Math Olympiad 1993
www.artofproblemsolving.com/community/c4594
by Peter, parmenides51

1 The 20 pupils in a class each send 10 cards to 10 (different) class members. [note: you cannot send a card to yourself.]
(a) Show at least 2 pupils sent each other a card.
(b) Now suppose we had n pupils sending m cards each. For which (m, n) is the above true? (That is, find minimal $m(n)$ or maximal $n(m)$)

2 A jeweler covers the diagonal of a unit square with small golden squares in the following way:

- the sides of all squares are parallel to the sides of the unit square
- for each neighbour is their sidelength either half or double of that square (squares are neighbour if they share a vertex)
- each midpoint of a square has distance to the vertex of the unit square equal to $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$ of the diagonal. (so real length: $\times \sqrt{2}$)
- all midpoints are on the diagonal
(a) What is the side length of the middle square?
(b) What is the total gold-plated area?
https://1.bp.blogspot.com/-azJkAVACPvQ/XWuytNaj27I/AAAAAAAAKpo/C6C0NOzoQiYbFXfe41nNjNK8PI s400/1993\%2Bflanders\%2Bp2.png

3 For $a, b, c>0$ we have:

$$
-1<\left(\frac{a-b}{a+b}\right)^{1993}+\left(\frac{b-c}{b+c}\right)^{1993}+\left(\frac{c-a}{c+a}\right)^{1993}<1
$$

4 Define the sequence $o a_{n}$ as follows: $o a_{0}=1, o a_{n}=o a_{n-1} \cdot \cos \left(\frac{\pi}{2^{n+1}}\right)$.
Find $\lim _{n \rightarrow+\infty} o a_{n}$.

