AoPS Community

Flanders Math Olympiad 1996

www.artofproblemsolving.com/community/c4597
by Peter

1 In triangle $\triangle A D C$ we got $A D=D C$ and $D=100^{\circ}$.
In triangle $\triangle C A B$ we got $C A=A B$ and $A=20^{\circ}$.
Prove that $A B=B C+C D$.
2 Determine the gcd of all numbers of the form $p^{8}-1$, with p a prime above 5.
3 Consider the points $1, \frac{1}{2}, \frac{1}{3}, \ldots$ on the real axis. Find the smallest value $k \in \mathbb{N}_{0}$ for which all points above can be covered with 5 closed intervals of length $\frac{1}{k}$.

4 Consider a real poyInomial $p(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$.
(a) If $\operatorname{deg}(p(x))>2$ prove that $\operatorname{deg}(p(x))=2+\operatorname{deg}(p(x+1)+p(x-1)-2 p(x))$.
(b) Let $p(x)$ a polynomial for which there are real constants r, s so that for all real x we have

$$
p(x+1)+p(x-1)-r p(x)-s=0
$$

Prove $\operatorname{deg}(p(x)) \leq 2$.
(c) Show, in (b) that $s=0$ implies $a_{2}=0$.

