AoPS Community

Flanders Math Olympiad 1997

www.artofproblemsolving.com/community/c4598
by Peter, parmenides51, Arne

1 Write the number 1997 as the sum of positive integers for which the product is maximal, and prove there's no better solution.

2 In the cartesian plane, consider the curves $x^{2}+y^{2}=r^{2}$ and $(x y)^{2}=1$. Call F_{r} the convex polygon with vertices the points of intersection of these 2 curves. (if they exist)
(a) Find the area of the polygon as a function of r.
(b) For which values of r do we have a regular polygon?
$3 \Delta o a_{1} b_{1}$ is isosceles with $\angle a_{1} o b_{1}=36^{\circ}$. Construct $a_{2}, b_{2}, a_{3}, b_{3}, \ldots$ as below, with $\left|o a_{i+1}\right|=\left|a_{i} b_{i}\right|$ and $\angle a_{i} o b_{i}=36^{\circ}$, Call the summed area of the first k triangles A_{k}. Let S be the area of the isocseles triangle, drawn in -- , with top angle 108° and $|o c|=|o d|=\left|o a_{1}\right|$, going through the points b_{2} and a_{2} as shown on the picture. (yes, $c d$ is parallel to $a_{1} b_{1}$ there)
Show $A_{k}<S$ for every positive integer k.
https://1.bp.blogspot.com/-Wi2fEsdckDE/XWuwIdw6hqI/AAAAAAAAKpc/_quN1EHOxYURpBfEgc8HiUN4b s400/1997\%2Bflanders\%2Bp3.png

4 Thirteen birds arrive and sit down in a plane. It's known that from each 5-tuple of birds, at least four birds sit on a circle. Determine the greatest $M \in\{1,2, \ldots, 13\}$ such that from these 13 birds, at least M birds sit on a circle, but not necessarily $M+1$ birds sit on a circle. (prove that your M is optimal)

