AoPS Community

Flanders Math Olympiad 1999

www.artofproblemsolving.com/community/c4600
by Peter, pbornsztein

1 Determine all 6-digit numbers (abcdef) so that $(a b c d e f)=(d e f)^{2}$ where $\left(x_{1} x_{2} \ldots x_{n}\right)$ is no multiplication but an n -digit number.

2 Let [mn] be a diameter of the circle C and $[A B]$ a chord with given length on this circle. $[A B]$ neither coincides nor is perpendicular to $[M N]$.
Let C, D be the orthogonal projections of A and B on $[M N]$ and P the midpoint of $[A B]$. Prove that $\angle C P D$ does not depend on the chord $[A B]$.

3 Determine all $f: \mathbb{R} \rightarrow \mathbb{R}$ for which

$$
2 \cdot f(x)-g(x)=f(y)-y \text { and } f(x) \cdot g(x) \geq x+1 .
$$

4 Let a, b, m, n integers greater than 1 . If $a^{n}-1$ and $b^{m}+1$ are both primes, give as much info as possible on a, b, m, n.

