AoPS Community

Flanders Math Olympiad 2001

www.artofproblemsolving.com/community/c4602
by Peter, parmenides51, Arne

1 may be challenge for beginner section, but anyone is able to solve it if you really try.
show that for every natural $n>1$ we have: $(n-1)^{2} \mid n^{n-1}-1$
2 Consider a triangle and 2 lines that each go through a corner and intersects the opposing segment, such that the areas are as on the attachment. Find the "?"
https://cdn.artofproblemsolving.com/attachments/8/a/5f0d909dae8abe067a14a2e34326a64d2f9c gif

3 In a circle we enscribe a regular 2001-gon and inside it a regular 667-gon with shared vertices.
Prove that the surface in the 2001-gon but not in the 667 -gon is of the form $k \cdot \sin ^{3}\left(\frac{\pi}{2001}\right) \cdot \cos ^{3}\left(\frac{\pi}{2001}\right)$ with k a positive integer. Find k.

4 A student concentrates on solving quadratic equations in \mathbb{R}. He starts with a first quadratic equation $x^{2}+a x+b=0$ where a and b are both different from 0 . If this first equation has solutions p and q with $p \leq q$, he forms a second quadratic equation $x^{2}+p x+q=0$. If this second equation has solutions, he forms a third quadratic equation in an identical way. He continues this process as long as possible. Prove that he will not obtain more than five equations.

