AoPS Community

Flanders Math Olympiad 2003
www.artofproblemsolving.com/community/c4604
by Peter

- $11-12$

1 Playing soccer with 3 goes as follows: 2 field players try to make a goal past the goalkeeper, the one who makes the goal stands goalman for next game, etc.

Arne, Bart and Cauchy played this game. Later, they tell their math teacher that A stood 12 times on the field, B 21 times on the field, C 8 times in the goal. Their teacher knows who made the 6th goal.

Who made it?
2 Two circles C_{1} and C_{2} intersect at S.
The tangent in S to C_{1} intersects C_{2} in A different from S.
The tangent in S to C_{2} intersects C_{1} in B different from S.
Another circle C_{3} goes through A, B, S.
The tangent in S to C_{3} intersects C_{1} in P different from S and C_{2} in Q different from S.
Prove that the distance $P S$ is equal to the distance $Q S$.
3 A number consists of 3 different digits. The sum of the 5 other numbers formed with those digits is 2003 . Find the number.

4 Consider all points with integer coordinates in the carthesian plane. If one draws a circle with $M(0,0)$ and a well-chose radius r, the circles goes through some of those points. (like circle with $r=2 \sqrt{2}$ goes through 4 points)

Prove that $\forall n \in \mathbb{N}, \exists r$ so that the circle with midpoint 0,0 and radius r goes through at least n points.

```
- 9-10
```

