AoPS Community

Italy TST 1996

www.artofproblemsolving.com/community/c460715
by Medjl

1 1-Let A and B be two diametrically opposite points on a circle with radius 1. Points $P_{1}, P_{2}, \ldots, P_{n}$ are arbitrarily chosen on the circle. Let a and b be the geometric means of the distances of $P_{1}, P_{2}, \ldots, P_{n}$ from A and B, respectively. Show that at least one of the numbers a and b does not exceed $\sqrt{2}$

2 2. Let $A_{1}, A_{2}, \ldots, A_{n}$ be distinct subsets of an n-element set $X(n \geq 2)$. Show that there exists an element x of X such that the sets $A_{1} \backslash\{x\}, \ldots \ldots . . ., A_{n} \backslash\{x\}$ are all distinct.

3 3.Let ABCD be a parallelogram with side AB longer than AD and acute angle $\angle D A B$. The bisector of $D A B$ meets side $C D$ at L and line $B C$ at K. If O is the circumcenter of triangle LCK, prove that the points B, C, O, D lie on a circle.

4 4.4. Prove that there exists a set X of 1996 positive integers with the following properties:
(i) the elements of X are pairwise coprime;
(ii) all elements of X and all sums of two or more distinct elements of X are composite numbers

