AoPS Community

South africa National Olympiad 1995

www.artofproblemsolving.com/community/c4608
by djb86

- Part A

1 Prove that there are no integers m and n such that

$$
19 m^{2}+95 m n+2000 n^{2}=1995 .
$$

$2 A B C$ is a triangle with $\hat{A}<\hat{C}$, and D is the point on $B C$ such that $B \hat{A} D=A \hat{C} B$. The perpendicular bisectors of $A D$ and $A C$ intersect in the point E. Prove that $B \hat{A} E=90^{\circ}$.

3 Suppose that $a_{1}, a_{2}, \ldots, a_{n}$ are the numbers $1,2,3, \ldots, n$ but written in any order. Prove that

$$
\left(a_{1}-1\right)^{2}+\left(a_{2}-2\right)^{2}+\cdots+\left(a_{n}-n\right)^{2}
$$

is always even.
4 Three circles, with radii p, q and r and centres A, B and C respectively, touch one another externally at points D, E and F. Prove that the ratio of the areas of $\triangle D E F$ and $\triangle A B C$ equals

$$
\frac{2 p q r}{(p+q)(q+r)(r+p)} .
$$

- Part B

1 The convex quadrilateral $A B C D$ has area 1, and $A B$ is produced to $E, B C$ to $F, C D$ to G and $D A$ to H, such that $A B=B E, B C=C F, C D=D G$ and $D A=A H$. Find the area of the quadrilateral $E F G H$.

2 Find all pairs (m, n) of natural numbers with $m<n$ such that $m^{2}+1$ is a multiple of n and $n^{2}+1$ is a multiple of m.

3 The circumcircle of $\triangle A B C$ has radius 1 and centre O and P is a point inside the triangle such that $O P=x$. Prove that

$$
A P \cdot B P \cdot C P \leq(1+x)^{2}(1-x)
$$

with equality if and only if $P=O$.

