AoPS Community

South africa National Olympiad 1997

www.artofproblemsolving.com/community/c4610 by Arne

1 From an initial triangle $\Delta A_{0} B_{0} C_{0}$, a sequence of triangles $\Delta A_{1} B_{1} C_{1}, A_{2} B_{2} C_{2}, \ldots$ is formed such that, at each stage, A_{k+1}, B_{k+1} and C_{k+1} are the points where the incircle of $\Delta A_{k} B_{k} C_{k}$ touches the sides $B_{k} C_{k}, C_{k} A_{k}$ and $A_{k} B_{k}$ respectively.
(a) Express $\angle A_{k+1} B_{k+1} C_{k+1}$ in terms of $\angle A_{k} B_{k} C_{k}$.
(b) Deduce that, as k increases, $\angle A_{k} B_{k} C_{k}$ tends to 60°.

2 Find all natural numbers with the property that, when the first digit is moved to the end, the resulting number is $\frac{7}{2}$ times the original one.

3 Find all solutions $x, y \in \mathbb{Z}, x, y \geq 0$, to the equation

$$
1+3^{x}=2^{y}
$$

$4 \quad$ Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ which satisfy

$$
f(m+f(n))=f(m)+n
$$

for all $m, n \in \mathbb{Z}$.
$5 \quad$ A circle and a point P higher than the circle lie in the same vertical plane. A particle moves along a straight line under gravity from P to a point Q on the circle. Given that the distance travelled from P in time t is equal to $\frac{1}{2} g t^{2} \sin \alpha$, where α is the angle of inclination of the line $P Q$ to the horizontal, give a geometrical characterization of the point Q for which the time taken from P to Q is a minimum.

6 Six points are connected in pairs by lines, each of which is either red or blue. Every pair of points is joined. Determine whether there must be a closed path having four sides all of the same colour. (A path is closed if it begins and ends at the same point.)

