

AoPS Community

1998 South africa National Olympiad

South africa National Olympiad 1998

www.artofproblemsolving.com/community/c4611 by Arne

1	Is $\log_{10} 8$ rational?
2	Find the maximum value of
	$\sin 2lpha + \sin 2eta + \sin 2\gamma$
	where α, β and γ are positive and $\alpha + \beta + \gamma = 180^{\circ}$.
3	A, B, C, D, E and F lie (in that order) on the circumference of a circle. The chords AD, BE and CF are concurrent. P, Q and R are the midpoints of AD, BE and CF respectively. Two further chords $AG \parallel BE$ and $AH \parallel CF$ are drawn. Show that PQR is similar to DGH .
4	In a group of people, every two people have exactly one friend in common. Prove that there is a person who is a friend of everyone else.
5	Prove that $\gcd\left(\binom{n}{1},\binom{n}{2},\ldots,\binom{n}{n-1}\right)$
	is a prime if n is a power of a prime, and 1 otherwise.
6	You are given n squares, not necessarily all of the same size, which have total area 1. Is it

always possible to place them without overlapping in a square of area 2?

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.