AoPS Community

South africa National Olympiad 1999

www.artofproblemsolving.com/community/c4612
by Arne

1 How many non-congruent triangles with integer sides and perimeter 1999 can be constructed?
$2 A, B, C$ and D are points on a given straight line, in that order. Show how to construct a square $P Q R S$, with all of P, Q, R and S on the same side of $A D$, such that A, B, C and D lie on $P Q, S R, Q R$ and $P S$ produced respectively.

3 The bisector of $\angle B A D$ in the parallellogram $A B C D$ intersects the lines $B C$ and $C D$ at the points K and L respectively. Prove that the centre of the circle passing through the points C, K and L lies on the circle passing through the points B, C and D.

4 The sequence $L_{1}, L_{2}, L_{3}, \ldots$ is defined by

$$
L_{1}=1, L_{2}=3, \quad L_{n}=L_{n-1}+L_{n-2} \text { for } n>2 .
$$

Prove that $L_{p}-1$ is divisible by p if p is prime.
$5 \quad$ Let S be the set of all rational numbers whose denominators are powers of 3 . Let a, b and c be given non-zero real numbers. Determine all real-valued functions f that are defined for $x \in S$, satisfy

$$
f(x)=a f(3 x)+b f(3 x-1)+c f(3 x-2) \text { if } 0 \leq x \leq 1,
$$

and are zero elsewhere.
6 You are at a point (a, b) and you need to reach another point (c, d). Both points are below the line $x=y$ and have integer coordinates. You can move in steps of length 1, either upwards of to the right, but you may not move to a point on the line $x=y$. How many different paths are there?

