

AoPS Community

South africa National Olympiad 1999

www.artofproblemsolving.com/community/c4612

by Arne

- 1 How many non-congruent triangles with integer sides and perimeter 1999 can be constructed?
- **2** *A*, *B*, *C* and *D* are points on a given straight line, in that order. Show how to construct a square *PQRS*, with all of *P*, *Q*, *R* and *S* on the same side of *AD*, such that *A*, *B*, *C* and *D* lie on *PQ*, *SR*, *QR* and *PS* produced respectively.
- **3** The bisector of $\angle BAD$ in the parallellogram ABCD intersects the lines BC and CD at the points K and L respectively. Prove that the centre of the circle passing through the points C, K and L lies on the circle passing through the points B, C and D.
- 4 The sequence L_1, L_2, L_3, \ldots is defined by

 $L_1 = 1$, $L_2 = 3$, $L_n = L_{n-1} + L_{n-2}$ for n > 2.

Prove that $L_p - 1$ is divisible by p if p is prime.

5 Let *S* be the set of all rational numbers whose denominators are powers of 3. Let *a*, *b* and *c* be given non-zero real numbers. Determine all real-valued functions *f* that are defined for $x \in S$, satisfy

f(x) = af(3x) + bf(3x - 1) + cf(3x - 2) if $0 \le x \le 1$,

and are zero elsewhere.

6 You are at a point (a, b) and you need to reach another point (c, d). Both points are below the line x = y and have integer coordinates. You can move in steps of length 1, either upwards of to the right, but you may not move to a point on the line x = y. How many different paths are there?

Art of Problem Solving is an ACS WASC Accredited School.