AoPS Community

South africa National Olympiad 2000

www.artofproblemsolving.com/community/c4613
by Arne

1 A number x_{n} of the form 10101... 1 has n ones. Find all n such that x_{n} is prime.
2 Solve for x, given $36 x^{4}+36 x^{3}-7 x^{2}-6 x+1=0$.
3 Let $c \geq 1$ be an integer, and define the sequence $a_{1}, a_{2}, a_{3}, \ldots$ by

$$
\begin{aligned}
a_{1} & =2, \\
a_{n+1} & =c a_{n}+\sqrt{\left(c^{2}-1\right)\left(a_{n}^{2}-4\right)} \text { for } n=1,2,3, \ldots .
\end{aligned}
$$

Prove that a_{n} is an integer for all n.
$4 \quad A B C D$ is a square of side 1. P and Q are points on $A B$ and $B C$ such that $\widehat{P D Q}=45^{\circ}$. Find the perimeter of $\triangle P B Q$.
$5 \quad$ Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ (where \mathbb{Z} is the set of all integers) such that

$$
2000 f(f(x))-3999 f(x)+1999 x=0 \text { for all } x \in \mathbb{Z}
$$

6 Let A_{n} be the number of ways to tile a $4 \times n$ rectangle using 2×1 tiles. Prove that A_{n} is divisible by 2 if and only if A_{n} is divisible by 3 .

