AoPS Community

South africa National Olympiad 2001

www.artofproblemsolving.com/community/c4614 by Arne
$1 \quad A B C D$ is a convex quadrilateral with perimeter p. Prove that

$$
\frac{1}{2} p<A C+B D<p
$$

(A polygon is convex if all of its interior angles are less than 180°.)
2 Find all triples (x, y, z) of real numbers that satisfy

$$
\begin{aligned}
& x\left(1-y^{2}\right)\left(1-z^{2}\right)+y\left(1-z^{2}\right)\left(1-x^{2}\right)+z\left(1-x^{2}\right)\left(1-y^{2}\right) \\
& =4 x y z \\
& =4(x+y+z)
\end{aligned}
$$

3 For a certain real number x, the differences between x^{1919}, x^{1960} and x^{2001} are all integers. Prove that x is an integer.
$4 \quad n$ red and n blue points on a plane are given so that no three of the $2 n$ points are collinear. Prove that it is always possible to split up the points into n pairs, with one red and one blue point in each pair, so that no two of the n line segments which connect the two members of a pair intersect.

5 Starting from a given cyclic quadrilateral \mathcal{Q}_{0}, a sequence of quadrilaterals is constructed so that \mathcal{Q}_{k+1} is the circumscribed quadrilateral of \mathcal{Q}_{k} for $k=0,1, \ldots$. The sequence terminates when a quadrilateral is reached that is not cyclic. (The circumscribed quadrilateral of a cylic quadrilateral $A B C D$ has sides that are tangent to the circumcircle of $A B C D$ at A, B, C and D.) Prove that the sequence always terminates, except when \mathcal{Q}_{0} is a square.

6 The unknown real numbers $x_{1}, x_{2}, \ldots, x_{n}$ satisfy $x_{1}<x_{2}<\cdots<x_{n}$, where $n \geq 3$. The numbers s, t and $d_{1}, d_{2}, \ldots, d_{n-2}$ are given, such that

$$
\begin{aligned}
s & =\sum_{i=1}^{n} x_{i} \\
t & =\sum_{i=1}^{n} x_{i}^{2} \\
d_{i} & =x_{i+2}-x_{i}, \quad i=1,2, \ldots, n-2
\end{aligned}
$$

For which n is this information always sufficient to determine $x_{1}, x_{2}, \ldots, x_{n}$ uniquely?

