AoPS Community

South africa National Olympiad 2002

www.artofproblemsolving.com/community/c4615
by Arne

1 Given a quadrilateral $A B C D$ such that $A B^{2}+C D^{2}=A D^{2}+B C^{2}$, prove that $A C \perp B D$.
2 Find all triples of natural numbers (a, b, c) such that a, b and c are in geometric progression and $a+b+c=111$.

3 A small square $P Q R S$ is contained in a big square. Produce $P Q$ to $A, Q R$ to $B, R S$ to C and $S P$ to D so that A, B, C and D lie on the four sides of the large square in order, produced if necessary. Prove that $A C=B D$ and $A C \perp B D$.

4 How many ways are there to express 1000000 as a product of exactly three integers greater than 1 ? (For the purpose of this problem, $a b c$ is not considered different from $b a c$, etc.)

5 In acute-angled triangle $A B C$, a semicircle with radius r_{a} is constructed with its base on $B C$ and tangent to the other two sides. r_{b} and r_{c} are defined similarly. r is the radius of the incircle of $A B C$. Show that

$$
\frac{2}{r}=\frac{1}{r_{a}}+\frac{1}{r_{b}}+\frac{1}{r_{c}} .
$$

6 Find all rational numbers a, b, c and d such that

$$
\begin{aligned}
8 a^{2}-3 b^{2}+5 c^{2}+16 d^{2}-10 a b+42 c d+18 a+22 b-2 c-54 d & =42 \\
15 a^{2}-3 b^{2}+21 c^{2}-5 d^{2}+4 a b+32 c d-28 a+14 b-54 c-52 d & =-22 .
\end{aligned}
$$

