

AoPS Community

1

South africa National Olympiad 2006

Reduce the fraction

www.artofproblemsolving.com/community/c4619 by djb86

•	$\frac{2121212121210}{11212121212121212121212121212121212121$
	to its simplest form.
2	Triangle ABC has $BC = 1$ and $AC = 2$. What is the maximum possible value of \hat{A} .
3	Determine all positive integers whose squares end in 196.
4	In triangle ABC , $AB = AC$ and $B\hat{A}C = 100^{\circ}$. Let D be on AC such that $A\hat{B}D = C\hat{B}D$. Prove that $AD + DB = BC$.
5	Find the number of subsets X of $\{1, 2,, 10\}$ such that X contains at least two elements and such that no two elements of X differ by 1.
6	Consider the function f defined by
	$f(n) = \frac{1}{n} \left(\left\lfloor \frac{n}{1} \right\rfloor + \left\lfloor \frac{n}{2} \right\rfloor + \dots + \left\lfloor \frac{n}{n} \right\rfloor \right)$

for all positive integers n. (Here $\lfloor x \rfloor$ denotes the greatest integer less than or equal to x.) Prove that

(a) f(n+1) > f(n) for infinitely many n.

(b) f(n+1) < f(n) for infinitely many n.

