AoPS Community

South africa National Olympiad 2006

www.artofproblemsolving.com/community/c4619
by djb86

1 Reduce the fraction

$$
\frac{2121212121210}{1121212121211}
$$

to its simplest form.
2 Triangle $A B C$ has $B C=1$ and $A C=2$. What is the maximum possible value of \hat{A}.
3 Determine all positive integers whose squares end in 196.
4 In triangle $A B C, A B=A C$ and $B \hat{A} C=100^{\circ}$. Let D be on $A C$ such that $A \hat{B} D=C \hat{B} D$. Prove that $A D+D B=B C$.

5 Find the number of subsets X of $\{1,2, \ldots, 10\}$ such that X contains at least two elements and such that no two elements of X differ by 1 .
$6 \quad$ Consider the function f defined by

$$
f(n)=\frac{1}{n}\left(\left\lfloor\frac{n}{1}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor+\cdots+\left\lfloor\frac{n}{n}\right\rfloor\right)
$$

for all positive integers n. (Here $\lfloor x\rfloor$ denotes the greatest integer less than or equal to x.) Prove that
(a) $f(n+1)>f(n)$ for infinitely many n.
(b) $f(n+1)<f(n)$ for infinitely many n.

