AoPS Community

South africa National Olympiad 2007

www.artofproblemsolving.com/community/c4620
by Raja Oktovin

1 Determine whether $\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{6}}$ is less than or greater than $\frac{3}{10}$.
2 Consider the equation $x^{4}=a x^{3}+b x^{2}+c x+2007$, where a, b, c are real numbers. Determine the largest value of b for which this equation has exactly three distinct solutions, all of which are integers.

3 In acute-angled triangle $A B C$, the points D, E, F are on sides $B C, C A, A B$, respectively such that $\angle A F E=\angle B F D, \angle F D B=\angle E D C, \angle D E C=\angle F E A$. Prove that $A D$ is perpendicular to $B C$.

4 Let $A B C$ be a triangle and $P Q R S$ a square with P on $A B, Q$ on $A C$, and R and S on $B C$. Let H on $B C$ such that $A H$ is the altitude of the triangle from A to base $B C$. Prove that:
(a) $\frac{1}{A H}+\frac{1}{B C}=\frac{1}{P Q}$
(b) the area of $A B C$ is twice the area of $P Q R S$ iff $A H=B C$
$5 \quad$ Let Z and R denote the sets of integers and real numbers, respectively.
Let $f: Z \rightarrow R$ be a function satisfying:
(i) $f(n) \geq 0$ for all $n \in Z$
(ii) $f(m n)=f(m) f(n)$ for all $m, n \in Z$
(iii) $f(m+n) \leq \max (f(m), f(n))$ for all $m, n \in Z$
(a) Prove that $f(n) \leq 1$ for all $n \in Z$
(b) Find a function $f: Z \rightarrow R$ satisfying (i), (ii),(iii) and $0<f(2)<1$ and $f(2007)=1$

6 Prove that it is not possible to write numbers $1,2,3, \ldots, 25$ on the squares of 5×5 chessboard such that any neighboring numbers differ by at most 4 .

