AoPS Community

South africa National Olympiad 2008

www.artofproblemsolving.com/community/c4621
by djb86

1 Determine the number of positive divisors of 2008^{8} that are less than 2008^{4}.
2 Let $A B C D$ be a convex quadrilateral with the property that $A B$ extended and $C D$ extended intersect at a right angle. Prove that $A C \cdot B D>A D \cdot B C$.

3 Let a, b, c be positive real numbers. Prove that

$$
(a+b)(b+c)(c+a) \geq 8(a+b-c)(b+c-a)(c+a-b)
$$

and determine when equality occurs.
4 A pack of 2008 cards, numbered from 1 to 2008, is shuffled in order to play a game in which each move has two steps:
(i) the top card is placed at the bottom;
(ii) the new top card is removed.

It turns out that the cards are removed in the order $1,2, \ldots, 2008$. Which card was at the top before the game started?
$5 \quad$ Triangle $A B C$ has orthocentre H. The feet of the perpendiculars from H to the internal and external bisectors of \hat{A} are P and Q respectively. Prove that P is on the line that passes through Q and the midpoint of $B C$. (Note: The ortohcentre of a triangle is the point where the three altitudes intersect.)

6 Find all function pairs (f, g) where each f and g is a function defined on the integers and with values, such that, for all integers a and b,

$$
f(a+b)=f(a) g(b)+g(a) f(b) g(a+b)=g(a) g(b)-f(a) f(b) .
$$

