AoPS Community

South africa National Olympiad 2011

www.artofproblemsolving.com/community/c4624
by DylanN

- \quad September 7th

1 Consider the sequence $2,3,5,6,7,8,10, \ldots$ of all positive integers that are not perfect squares. Determine the $2011^{\text {th }}$ term of the sequence.

2 Suppose that x and y are real numbers that satisfy the system of equations
$2^{x}-2^{y}=14^{x}-4^{y}=\frac{5}{3}$
Determine $x-y$
3 We call a sequence of m consecutive integers a friendly sequence if its first term is divisible by 1 , the second by $2, \ldots$, the $(m-1)^{t h}$ by $m-1$, and in addition, the last term is divisible by m^{2}
Does a friendly sequence exist for (a) $m=20$ and (b) $m=11$?
4 An airline company is planning to introduce a network of connections between the ten different airports of Sawubonia. The airports are ranked by priority from first to last (with no ties). We call such a network feasible if it satisfies the following conditions:

- All connections operate in both directions
- If there is a direct connection between two airports A and B, and C has higher priority than B, then there must also be a direct connection between A and C .

Some of the airports may not be served, and even the empty network (no connections at all) is allowed. How many feasible networks are there?
$5 \quad$ Let \mathbb{N}_{0} denote the set of all nonnegative integers. Determine all functions $f: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ with the following two properties:
$-0 \leq f(x) \leq x^{2}$ for all $x \in \mathbb{N}_{0}$

- $x-y$ divides $f(x)-f(y)$ for all $x, y \in \mathbb{N}_{0}$ with $x>y$

6 In triangle $A B C$, the incircle touches $B C$ in $D, C A$ in E and $A B$ in F. The bisector of $\angle B A C$ intersects $B C$ in G. The lines $B E$ and $C F$ intersect in J. The line through J perpendicular to $E F$ intersects $B C$ in K. Prove that
$\frac{G K}{D K}=\frac{A E}{C E}+\frac{A F}{B F}$

