

AoPS Community

2011 South africa National Olympiad

South africa National Olympiad 2011

www.artofproblemsolving.com/community/c4624 by DylanN

-	September 7th
1	Consider the sequence $2, 3, 5, 6, 7, 8, 10,$ of all positive integers that are not perfect squares. Determine the 2011^{th} term of the sequence.
2	Suppose that x and y are real numbers that satisfy the system of equations
	$2^x - 2^y = 1 \ 4^x - 4^y = \frac{5}{3}$
	Determine $x - y$
3	We call a sequence of m consecutive integers a <i>friendly</i> sequence if its first term is divisible by 1, the second by 2,, the $(m-1)^{th}$ by $m-1$, and in addition, the last term is divisible by m^2
	Does a friendly sequence exist for (a) $m = 20$ and (b) $m = 11$?
4	An airline company is planning to introduce a network of connections between the ten different airports of Sawubonia. The airports are ranked by priority from first to last (with no ties). We call such a network <i>feasible</i> if it satisfies the following conditions:
	- All connections operate in both directions - If there is a direct connection between two airports A and B, and C has higher priority than B, then there must also be a direct connection between A and C.
	Some of the airports may not be served, and even the empty network (no connections at all) is allowed. How many feasible networks are there?
5	Let \mathbb{N}_0 denote the set of all nonnegative integers. Determine all functions $f : \mathbb{N}_0 \to \mathbb{N}_0$ with the following two properties:
	- $0 \le f(x) \le x^2$ for all $x \in \mathbb{N}_0$
	- $x - y$ divides $f(x) - f(y)$ for all $x, y \in \mathbb{N}_0$ with $x > y$
6	In triangle <i>ABC</i> , the incircle touches <i>BC</i> in <i>D</i> , <i>CA</i> in <i>E</i> and <i>AB</i> in <i>F</i> . The bisector of $\angle BAC$ intersects <i>BC</i> in <i>G</i> . The lines <i>BE</i> and <i>CF</i> intersect in <i>J</i> . The line through <i>J</i> perpendicular to <i>EF</i> intersects <i>BC</i> in <i>K</i> . Prove that
	$\frac{GK}{DK} = \frac{AE}{CE} + \frac{AF}{BF}$

AoPS Community

2011 South africa National Olympiad

Act of Problem Solving is an ACS WASC Accredited School.