AoPS Community

South africa National Olympiad 2012

www.artofproblemsolving.com/community/c4625
by DylanN

1 Given that $\frac{1+3+5+\cdots+(2 n-1)}{2+4+6+\cdots+(2 n)}=\frac{2011}{2012}$, determine n .

2 Let $A B C D$ be a square and X a point such that A and X are on opposite sides of $C D$. The lines $A X$ and $B X$ intersect $C D$ in Y and Z respectively. If the area of $A B C D$ is 1 and the area of $X Y Z$ is $\frac{2}{3}$, determine the length of $Y Z$

3 Sixty points, of which thirty are coloured red, twenty are coloured blue and ten are coloured green, are marked on a circle. These points divide the circle into sixty arcs. Each of these arcs is assigned a number according to the colours of its endpoints: an arc between a red and a green point is assigned a number 1 , an arc between a red and a blue point is assigned a number 2 , and an arc between a blue and a green point is assigned a number 3 . The arcs between two points of the same colour are assigned a number 0 . What is the greatest possible sum of all the numbers assigned to the arcs?
$4 \quad$ Let p and k be positive integers such that p is prime and $k>1$. Prove that there is at most one pair (x, y) of positive integers such that $x^{k}+p x=y^{k}$.

5 Let $A B C$ be a triangle such that $A B \neq A C$. We denote its orthocentre by H, its circumcentre by O and the midpoint of $B C$ by D. The extensions of $H D$ and $A O$ meet in P. Prove that triangles $A H P$ and $A B C$ have the same centroid.
$6 \quad$ Find all functions $f: \mathbb{N} \rightarrow \mathbb{R}$ such that $f(k m)+f(k n)-f(k) f(m n) \geq 1$ for all $k, m, n \in \mathbb{N}$.

