AoPS Community

USA Team Selection Test 2000

www.artofproblemsolving.com/community/c4630
by MithsApprentice, Max D.R., Alexander Lenin, hxtung, rrusczyk

Day 1 June 10th
1 Let a, b, c be nonnegative real numbers. Prove that

$$
\frac{a+b+c}{3}-\sqrt[3]{a b c} \leq \max \left\{(\sqrt{a}-\sqrt{b})^{2},(\sqrt{b}-\sqrt{c})^{2},(\sqrt{c}-\sqrt{a})^{2}\right\}
$$

2 Let $A B C D$ be a cyclic quadrilateral and let E and F be the feet of perpendiculars from the intersection of diagonals $A C$ and $B D$ to $A B$ and $C D$, respectively. Prove that $E F$ is perpendicular to the line through the midpoints of $A D$ and $B C$.

3 Let p be a prime number. For integers r, s such that $r s\left(r^{2}-s^{2}\right)$ is not divisible by p, let $f(r, s)$ denote the number of integers $n \in\{1,2, \ldots, p-1\}$ such that $\{r n / p\}$ and $\{s n / p\}$ are either both less than $1 / 2$ or both greater than $1 / 2$. Prove that there exists $N>0$ such that for $p \geq N$ and all r, s,

$$
\left\lceil\frac{p-1}{3}\right\rceil \leq f(r, s) \leq\left\lfloor\frac{2(p-1)}{3}\right\rfloor .
$$

Day 2 June 11th
4 Let n be a positive integer. Prove that

$$
\binom{n}{0}^{-1}+\binom{n}{1}^{-1}+\cdots+\binom{n}{n}^{-1}=\frac{n+1}{2^{n+1}}\left(\frac{2}{1}+\frac{2^{2}}{2}+\cdots+\frac{2^{n+1}}{n+1}\right) .
$$

$5 \quad$ Let n be a positive integer. A corner is a finite set S of ordered n-tuples of positive integers such that if $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ are positive integers with $a_{k} \geq b_{k}$ for $k=1,2, \ldots, n$ and $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in S$, then $\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in S$. Prove that among any infinite collection of corners, there exist two corners, one of which is a subset of the other one.

6 Let $A B C$ be a triangle inscribed in a circle of radius R, and let P be a point in the interior of triangle $A B C$. Prove that

$$
\frac{P A}{B C^{2}}+\frac{P B}{C A^{2}}+\frac{P C}{A B^{2}} \geq \frac{1}{R}
$$

Alternative formulation: If $A B C$ is a triangle with sidelengths $B C=a, C A=b, A B=c$ and circumradius R, and P is a point inside the triangle $A B C$, then prove that $\frac{P A}{a^{2}}+\frac{P B}{b^{2}}+\frac{P C}{c^{2}} \geq \frac{1}{R}$.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa. org).

