Art of Problem Solving

AoPS Community

www.artofproblemsolving.com/community/c463178 by lifeisgood03, Achillys, ThE-dArK-IOrD

- \quad Grade 10
- Day 1

1 Suppose that the sequence $\left\{a_{n}\right\}$ satisfy $a_{1}=1$ and $a_{2 k}=a_{2 k-1}+a_{k}, \quad a_{2 k+1}=a_{2 k}$ for $k=$ 1,2,...
Prove that $a_{2^{n}}<2^{\frac{n^{2}}{2}}$ for any integer $n \geq 3$.
2 Let I be the incenter of $\triangle A B C$ with $A B>A C$. Let Γ be the circle with diameter $A I$. The circumcircle of $\triangle A B C$ intersects Γ at points A, D, with point D lying on AC (not containing B). Let the line passing through A and parallel to $B C$ intersect Γ at points A, E. If $D I$ is the angle bisector of $\angle C D E$, and $\angle A B C=33^{\circ}$, find the value of $\angle B A C$.

3 Can you make 2015 positive integers $1,2, \ldots, 2015$ to be a certain permutation which can be ordered in the circle such that the sum of any two adjacent numbers is a multiple of 4 or a multiple of 7 ?

4 For any positive integer n, we have the set $P_{n}=\left\{n^{k} \mid k=0,1,2, \ldots\right\}$. For positive integers a, b, c, we define the group of (a, b, c) as lucky if there is a positive integer m such that $a-1$, $a b-12, a b c-2015$ (the three numbers need not be different from each other) belong to the set P_{m}. Find the number of lucky groups.

- Day 2

5 Suppose that a, b are real numbers, function $f(x)=a x+b$ satisfies $|f(x)| \leq 1$ for any $x \in[0,1]$. Find the range of values of $S=(a+1)(b+1)$.

6 In $\triangle A B C$, we have three edges with lengths $B C=a, C A=b A B=c$, and $c<b<a<2 c . P$ and Q are two points of the edges of $\triangle A B C$, and the straight line $P Q$ divides $\triangle A B C$ into two parts with the same area. Find the minimum value of the length of the line segment $P Q$.

7 In $\triangle A B C$, we have $A B>A C>B C . D, E, F$ are the tangent points of the inscribed circle of $\triangle A B C$ with the line segments $A B, B C, A C$ respectively. The points L, M, N are the midpoints of the line segments $D E, E F, F D$. The straight line $N L$ intersects with ray $A B$ at P, straight line $L M$ intersects ray $B C$ at Q and the straight line $N M$ intersects ray $A C$ at R. Prove that $P A \cdot Q B \cdot R C=P D \cdot Q E \cdot R F$.

AoPS Community

2015 South East Mathematical Olympiad

$8 \quad$ For any integers m, n, we have the set $A(m, n)=\left\{x^{2}+m x+n \mid x \in \mathbb{Z}\right\}$, where \mathbb{Z} is the integer set. Does there exist three distinct elements a, b, c which belong to $A(m, n)$ and satisfy the equality $a=b c$?

- \quad Grade 11
- Day 1

1 Grade 10 P2

2 Given a sequence $\left\{a_{n}\right\}_{n \in \mathbb{Z}^{+}}$defined by $a_{1}=1$ and $a_{2 k}=a_{2 k-1}+a_{k}, a_{2 k+1}=a_{2 k}$ for all positive integer k.
Prove that, for any positive integer $n, a_{2^{n}}>2^{\frac{n^{2}}{4}}$.

$3 \quad$ Grade 10 P4

4 Given 8 pairwise distinct positive integers $a_{1}, a_{2},, a_{8}$ such that the greatest common divisor of any three of them is equal to 1 . Show that there exists positive integer $n \geq 8$ and n pairwise distinct positive integers $m_{1}, m_{2},, m_{n}$ with the greatest common divisor of all n numbers equal to 1 such that for any positive integers $1 \leq p<q<r \leq n$, there exists positive integers $1 \leq i<j \leq 8$ that $a_{i} a_{j} \mid m_{p}+m_{q}+m_{r}$.

- Day 2

$5 \quad$ Given two points E and F lie on segment $A B$ and $A D$, respectively. Let the segments $B F$ and $D E$ intersects at point C. If its known that $A E+E C=A F+F C$, show that $A B+B C=$ $A D+D C$.

6 Given a positive integer $n \geq 2$. Let $A=\{(a, b) \mid a, b \in\{1,2, n\}\}$ be the set of points in Cartesian coordinate plane. How many ways to colour points in A, each by one of three fixed colour, such that, for any $a, b \in\{1,2,, n-1\}$, if (a, b) and $(a+1, b)$ have same colour, then $(a, b+1)$ and $(a+1, b+1)$ also have same colour.
$7 \quad$ Grade 10 P7
8 Find all prime number p such that there exists an integer-coefficient polynomial $f(x)=x^{p-1}+$ $a_{p-2} x^{p-2}++a_{1} x+a_{0}$ that has $p-1$ consecutive positive integer roots and $p^{2} \mid f(i) f(-i)$, where i is the imaginary unit.

