

AoPS Community

2015 South East Mathematical Olympiad

www.artofproblemsolving.com/community/c463178 by lifeisgood03, Achillys, ThE-dArK-IOrD

-	Grade 10
-	Day 1
1	Suppose that the sequence $\{a_n\}$ satisfy $a_1 = 1$ and $a_{2k} = a_{2k-1} + a_k$, $a_{2k+1} = a_{2k}$ for $k = 1, 2,$ Prove that $a_{2^n} < 2^{\frac{n^2}{2}}$ for any integer $n \ge 3$.
2	Let <i>I</i> be the incenter of $\triangle ABC$ with $AB > AC$. Let Γ be the circle with diameter <i>AI</i> . The circumcircle of $\triangle ABC$ intersects Γ at points <i>A</i> , <i>D</i> , with point <i>D</i> lying on AC (not containing <i>B</i>). Let the line passing through <i>A</i> and parallel to <i>BC</i> intersect Γ at points <i>A</i> , <i>E</i> . If <i>DI</i> is the angle bisector of $\angle CDE$, and $\angle ABC = 33^{\circ}$, find the value of $\angle BAC$.
3	Can you make 2015 positive integers $1, 2, \ldots, 2015$ to be a certain permutation which can be ordered in the circle such that the sum of any two adjacent numbers is a multiple of 4 or a multiple of 7?
4	For any positive integer n , we have the set $P_n = \{n^k \mid k = 0, 1, 2,\}$. For positive integers a, b, c , we define the group of (a, b, c) as lucky if there is a positive integer m such that $a - 1$, $ab - 12$, $abc - 2015$ (the three numbers need not be different from each other) belong to the set P_m . Find the number of lucky groups.
-	Day 2
5	Suppose that a, b are real numbers, function $f(x) = ax + b$ satisfies $ f(x) \le 1$ for any $x \in [0, 1]$. Find the range of values of $S = (a + 1)(b + 1)$.
6	In $\triangle ABC$, we have three edges with lengths $BC = a$, $CA = bAB = c$, and $c < b < a < 2c$. P and Q are two points of the edges of $\triangle ABC$, and the straight line PQ divides $\triangle ABC$ into two parts with the same area. Find the minimum value of the length of the line segment PQ .
7	In $\triangle ABC$, we have $AB > AC > BC$. D, E, F are the tangent points of the inscribed circle of $\triangle ABC$ with the line segments AB, BC, AC respectively. The points L, M, N are the midpoints of the line segments DE, EF, FD . The straight line NL intersects with ray AB at P , straight line LM intersects ray BC at Q and the straight line NM intersects ray AC at R . Prove that $PA \cdot QB \cdot RC = PD \cdot QE \cdot RF$.

AoPS Community

2015 South East Mathematical Olympiad

8 For any integers m, n, we have the set $A(m, n) = \{x^2 + mx + n \mid x \in \mathbb{Z}\}$, where \mathbb{Z} is the integer set. Does there exist three distinct elements a, b, c which belong to A(m, n) and satisfy the equality a = bc? Grade 11 Dav 1 1 Grade 10 P2 2 Given a sequence $\{a_n\}_{n \in \mathbb{Z}^+}$ defined by $a_1 = 1$ and $a_{2k} = a_{2k-1} + a_k, a_{2k+1} = a_{2k}$ for all positive integer k. Prove that, for any positive integer n, $a_{2^n} > 2^{\frac{n^2}{4}}$. 3 Grade 10 P4 4 Given 8 pairwise distinct positive integers a_1, a_2, a_8 such that the greatest common divisor of any three of them is equal to 1. Show that there exists positive integer n > 8 and n pairwise distinct positive integers m_1, m_2, m_n with the greatest common divisor of all n numbers equal to 1 such that for any positive integers $1 \le p < q < r \le n$, there exists positive integers $1 \le i < j \le 8$ that $a_i a_j \mid m_p + m_a + m_r$. Day 2 Given two points E and F lie on segment AB and AD, respectively. Let the segments BF and 5 DE intersects at point C. If its known that AE + EC = AF + FC, show that AB + BC =AD + DC. 6 Given a positive integer $n \ge 2$. Let $A = \{(a, b) \mid a, b \in \{1, 2, n\}\}$ be the set of points in Cartesian coordinate plane. How many ways to colour points in A, each by one of three fixed colour, such that, for any $a, b \in \{1, 2, n - 1\}$, if (a, b) and (a + 1, b) have same colour, then (a, b + 1) and (a+1, b+1) also have same colour. Grade 10 P7 7 8 Find all prime number p such that there exists an integer-coefficient polynomial $f(x) = x^{p-1} + y^{p-1}$ $a_{p-2}x^{p-2} + a_1x + a_0$ that has p-1 consecutive positive integer roots and $p^2 \mid f(i)f(-i)$, where i is the imaginary unit.

Art of Problem Solving is an ACS WASC Accredited School.