

AoPS Community

USA Team Selection Test 2002

www.artofproblemsolving.com/community/c4632

by galois, cauchyguy, MithsApprentice, imortal, hxtung, cosinerburc, rrusczyk

Day 1 June 21st

1	Let ABC be a triangle, and A, B, C its angles. Prove that
	$\sin\frac{3A}{2} + \sin\frac{3B}{2} + \sin\frac{3C}{2} \le \cos\frac{A-B}{2} + \cos\frac{B-C}{2} + \cos\frac{C-A}{2}.$
2	Let $p > 5$ be a prime number. For any integer x , define
	$f_p(x) = \sum_{k=1}^{p-1} \frac{1}{(px+k)^2}$
	Prove that for any pair of positive integers x , y , the numerator of $f_p(x) - f_p(y)$, when written as a fraction in lowest terms, is divisible by p^3 .
3	Let <i>n</i> be an integer greater than 2, and P_1, P_2, \dots, P_n distinct points in the plane. Let S denote the union of all segments $P_1P_2, P_2P_3, \dots, P_{n-1}P_n$. Determine if it is always possible to find points A and B in S such that $P_1P_n \parallel AB$ (segment AB can lie on line P_1P_n) and $P_1P_n = kAB$, where (1) $k = 2.5$; (2) $k = 3$.
Day 2	June 22nd
4	Let <i>n</i> be a positive integer and let <i>S</i> be a set of $2^n + 1$ elements. Let <i>f</i> be a function from the set of two-element subsets of <i>S</i> to $\{0, \ldots, 2^{n-1} - 1\}$. Assume that for any elements x, y, z of <i>S</i> , one of $f(\{x, y\}), f(\{y, z\}), f(\{z, x\})$ is equal to the sum of the other two. Show that there exist a, b, c in <i>S</i> such that $f(\{a, b\}), f(\{b, c\}), f(\{c, a\})$ are all equal to 0.
5	Consider the family of nonisosceles triangles ABC satisfying the property $AC^2 + BC^2 = 2AB^2$. Points M and D lie on side AB such that $AM = BM$ and $\angle ACD = \angle BCD$. Point E is in the plane such that D is the incenter of triangle CEM . Prove that exactly one of the ratios

 $\frac{CE}{EM}, \quad \frac{EM}{MC}, \quad \frac{MC}{CE}$

is constant.

6 Find in explicit form all ordered pairs of positive integers (m, n) such that mn - 1 divides $m^2 + n^2$.

AoPS Community

2002 USA Team Selection Test

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

AoPS Online 🏟 AoPS Academy 🏟 AoPS and AoPS