AoPS Community

USA Team Selection Test 2002

www.artofproblemsolving.com/community/c4632
by galois, cauchyguy, MithsApprentice, imortal, hxtung, cosinerburc, rrusczyk

Day 1 June 21st

1 Let $A B C$ be a triangle, and A, B, C its angles. Prove that

$$
\sin \frac{3 A}{2}+\sin \frac{3 B}{2}+\sin \frac{3 C}{2} \leq \cos \frac{A-B}{2}+\cos \frac{B-C}{2}+\cos \frac{C-A}{2} .
$$

2 Let $p>5$ be a prime number. For any integer x, define

$$
f_{p}(x)=\sum_{k=1}^{p-1} \frac{1}{(p x+k)^{2}}
$$

Prove that for any pair of positive integers x, y, the numerator of $f_{p}(x)-f_{p}(y)$, when written as a fraction in lowest terms, is divisible by p^{3}.

3 Let n be an integer greater than 2 , and $P_{1}, P_{2}, \cdots, P_{n}$ distinct points in the plane. Let \mathcal{S} denote the union of all segments $P_{1} P_{2}, P_{2} P_{3}, \ldots, P_{n-1} P_{n}$. Determine if it is always possible to find points A and B in \mathcal{S} such that $P_{1} P_{n} \| A B$ (segment $A B$ can lie on line $P_{1} P_{n}$) and $P_{1} P_{n}=k A B$, where (1) $k=2.5$; (2) $k=3$.

Day 2 June 22nd
$4 \quad$ Let n be a positive integer and let S be a set of $2^{n}+1$ elements. Let f be a function from the set of two-element subsets of S to $\left\{0, \ldots, 2^{n-1}-1\right\}$. Assume that for any elements x, y, z of S, one of $f(\{x, y\}), f(\{y, z\}), f(\{z, x\})$ is equal to the sum of the other two. Show that there exist a, b, c in S such that $f(\{a, b\}), f(\{b, c\}), f(\{c, a\})$ are all equal to 0 .

5 Consider the family of nonisosceles triangles $A B C$ satisfying the property $A C^{2}+B C^{2}=2 A B^{2}$. Points M and D lie on side $A B$ such that $A M=B M$ and $\angle A C D=\angle B C D$. Point E is in the plane such that D is the incenter of triangle $C E M$. Prove that exactly one of the ratios

$$
\frac{C E}{E M}, \quad \frac{E M}{M C}, \quad \frac{M C}{C E}
$$

is constant.
$6 \quad$ Find in explicit form all ordered pairs of positive integers (m, n) such that $m n-1$ divides $m^{2}+n^{2}$.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

