AoPS Community

USA Team Selection Test 2003

www.artofproblemsolving.com/community/c4633
by MithsApprentice, dreammath, grobber, ThAzN1, cauchyguy, rrusczyk

Day 1 June 20th

1 For a pair of integers a and b, with $0<a<b<1000$, set $S \subseteq\{1,2, \ldots, 2003\}$ is called a skipping set for (a, b) if for any pair of elements $s_{1}, s_{2} \in S,\left|s_{1}-s_{2}\right| \notin\{a, b\}$. Let $f(a, b)$ be the maximum size of a skipping set for (a, b). Determine the maximum and minimum values of f.

2 Let $A B C$ be a triangle and let P be a point in its interior. Lines $P A, P B, P C$ intersect sides $B C$, $C A, A B$ at D, E, F, respectively. Prove that

$$
[P A F]+[P B D]+[P C E]=\frac{1}{2}[A B C]
$$

if and only if P lies on at least one of the medians of triangle $A B C$. (Here $[X Y Z]$ denotes the area of triangle $X Y Z$.)

3 Find all ordered triples of primes (p, q, r) such that

$$
p\left|q^{r}+1, \quad q\right| r^{p}+1, \quad r \mid p^{q}+1 .
$$

Reid Barton
Day 2 June 21st
$4 \quad$ Let \mathbb{N} denote the set of positive integers. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f(m+n) f(m-n)=f\left(m^{2}\right)
$$

for $m, n \in \mathbb{N}$.
5 Let A, B, C be real numbers in the interval $\left(0, \frac{\pi}{2}\right)$. Let

$$
\begin{aligned}
& X=\frac{\sin A \sin (A-B) \sin (A-C)}{\sin (B+C)} \\
& Y=\frac{\sin B \sin (B-C) \sin (B-A)}{\sin (C+A)} \\
& Z=\frac{\sin C \sin (C-A) \sin (C-B)}{\sin (A+B)} .
\end{aligned}
$$

Prove that $X+Y+Z \geq 0$.

6 Let $\overline{A H_{1}}, \overline{\mathrm{BH}_{2}}$, and $\overline{\mathrm{CH}_{3}}$ be the altitudes of an acute scalene triangle $A B C$. The incircle of triangle $A B C$ is tangent to $\overline{B C}, \overline{C A}$, and $\overline{A B}$ at T_{1}, T_{2}, and T_{3}, respectively. For $k=1,2,3$, let P_{i} be the point on line $H_{i} H_{i+1}$ (where $H_{4}=H_{1}$) such that $H_{i} T_{i} P_{i}$ is an acute isosceles triangle with $H_{i} T_{i}=H_{i} P_{i}$. Prove that the circumcircles of triangles $T_{1} P_{1} T_{2}, T_{2} P_{2} T_{3}, T_{3} P_{3} T_{1}$ pass through a common point.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

