

AoPS Community

2003 USA Team Selection Test

USA Team Selection Test 2003

www.artofproblemsolving.com/community/c4633

by MithsApprentice, dreammath, grobber, ThAzN1, cauchyguy, rrusczyk

Day 1 June 20th

- **1** For a pair of integers a and b, with 0 < a < b < 1000, set $S \subseteq \{1, 2, ..., 2003\}$ is called a *skipping* set for (a, b) if for any pair of elements $s_1, s_2 \in S$, $|s_1 s_2| \notin \{a, b\}$. Let f(a, b) be the maximum size of a skipping set for (a, b). Determine the maximum and minimum values of f.
- 2 Let *ABC* be a triangle and let *P* be a point in its interior. Lines *PA*, *PB*, *PC* intersect sides *BC*, *CA*, *AB* at *D*, *E*, *F*, respectively. Prove that

$$[PAF] + [PBD] + [PCE] = \frac{1}{2}[ABC]$$

if and only if P lies on at least one of the medians of triangle ABC. (Here [XYZ] denotes the area of triangle XYZ.)

3 Find all ordered triples of primes (p, q, r) such that

$$p \mid q^r + 1, \quad q \mid r^p + 1, \quad r \mid p^q + 1.$$

Reid Barton

Day 2 June 21st

4 Let \mathbb{N} denote the set of positive integers. Find all functions $f : \mathbb{N} \to \mathbb{N}$ such that

$$f(m+n)f(m-n) = f(m^2)$$

for $m, n \in \mathbb{N}$.

5 Let
$$A, B, C$$
 be real numbers in the interval $(0, \frac{\pi}{2})$. Let

$$X = \frac{\sin A \sin(A - B) \sin(A - C)}{\sin(B + C)}$$
$$Y = \frac{\sin B \sin(B - C) \sin(B - A)}{\sin(C + A)}$$
$$Z = \frac{\sin C \sin(C - A) \sin(C - B)}{\sin(A + B)}.$$

Prove that $X + Y + Z \ge 0$.

AoPS Community

2003 USA Team Selection Test

- 6 Let $\overline{AH_1}$, $\overline{BH_2}$, and $\overline{CH_3}$ be the altitudes of an acute scalene triangle ABC. The incircle of triangle ABC is tangent to \overline{BC} , \overline{CA} , and \overline{AB} at T_1 , T_2 , and T_3 , respectively. For k = 1, 2, 3, let P_i be the point on line H_iH_{i+1} (where $H_4 = H_1$) such that $H_iT_iP_i$ is an acute isosceles triangle with $H_iT_i = H_iP_i$. Prove that the circumcircles of triangles $T_1P_1T_2$, $T_2P_2T_3$, $T_3P_3T_1$ pass through a common point.
- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.