

AoPS Community

2004 USA Team Selection Test

USA Team Selection Test 2004

www.artofproblemsolving.com/community/c4634 by cauchyguy, rrusczyk

Day 1

1	Suppose a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n are real numbers such that	
	$(a_1^2 + a_2^2 + \dots + a_n^2 - 1)(b_1^2 + b_2^2 + \dots + b_n^2 - 1) > (a_1b_1 + a_2b_2 + \dots + b_n^2 - 1) > (a_1b_1 + a_2b_2 + \dots + a_n^2 - 1)(a_1b_1 + a_2b_2 + \dots + a_n^2 - 1) > (a_1b_1 + a_2b_2 + \dots + a_n^2 - 1)$	$(a_n + a_n b_n - 1)^2.$
	Prove that $a_1^2 + a_2^2 + \dots + a_n^2 > 1$ and $b_1^2 + b_2^2 + \dots + b_n^2 > 1$.	
2	Assume n is a positive integer. Considers sequences a_0, a_1, \ldots, a_n for wh for all i and $a_n = a_0$.	nich $a_i \in \{1, 2, \dots, n\}$
	(a) Suppose n is odd. Find the number of such sequences if $a_i - a_{i-1}$ $i = 1, 2,, n$.	$\not\equiv i \pmod{n}$ for all
	(b) Suppose n is an odd prime. Find the number of such sequences if a_i – for all $i = 1, 2,, n$.	$a_{i-1} \not\equiv i, 2i \pmod{n}$
3	Draw a 2004×2004 array of points. What is the largest integer n for which a convex n -gon whose vertices are chosen from the points in the array?	it is possible to draw
D		
4	Let ABC be a triangle. Choose a point D in its interior. Let ω_1 be a circle part D and ω_2 be a circle passing through C and D so that the other point of incircles lies on AD . Let ω_1 and ω_2 intersect side BC at E and F , respective intersection of DF , AB and Y the intersection of DE , AC . Show that XY	assing through B and itersection of the two vely. Denote by X the full BC .
5	Let $A = (0, 0, 0)$ in 3D space. Define the <i>weight</i> of a point as the sum of the a coordinates. Call a point a <i>primitive lattice point</i> if all of its coordinates are is 1. Let square $ABCD$ be an <i>unbalanced primitive integer square</i> if it has in also, B and D are primitive lattice points with different weights. Prove the many unbalanced primitive integer squares such that the planes containin parallel to each other.	absolute values of the e integers whose gcd iteger side length and nat there are infinitely g the squares are not

6 Define the function $f : \mathbb{N} \cup \{0\} \to \mathbb{Q}$ as follows: f(0) = 0 and

$$f(3n+k) = -\frac{3f(n)}{2} + k,$$

AoPS Community

2004 USA Team Selection Test

for k = 0, 1, 2. Show that f is one-to-one and determine the range of f.

 https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🕬