AoPS Community

USA Team Selection Test 2004

www.artofproblemsolving.com/community/c4634
by cauchyguy, rrusczyk

Day 1

1 Suppose $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ are real numbers such that

$$
\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}-1\right)\left(b_{1}^{2}+b_{2}^{2}+\cdots+b_{n}^{2}-1\right)>\left(a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}-1\right)^{2} .
$$

Prove that $a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}>1$ and $b_{1}^{2}+b_{2}^{2}+\cdots+b_{n}^{2}>1$.
2 Assume n is a positive integer. Considers sequences $a_{0}, a_{1}, \ldots, a_{n}$ for which $a_{i} \in\{1,2, \ldots, n\}$ for all i and $a_{n}=a_{0}$.
(a) Suppose n is odd. Find the number of such sequences if $a_{i}-a_{i-1} \not \equiv i(\bmod n)$ for all $i=1,2, \ldots, n$.
(b) Suppose n is an odd prime. Find the number of such sequences if $a_{i}-a_{i-1} \not \equiv i, 2 i(\bmod n)$ for all $i=1,2, \ldots, n$.

3 Draw a 2004×2004 array of points. What is the largest integer n for which it is possible to draw a convex n-gon whose vertices are chosen from the points in the array?

Day 2

$4 \quad$ Let $A B C$ be a triangle. Choose a point D in its interior. Let ω_{1} be a circle passing through B and D and ω_{2} be a circle passing through C and D so that the other point of intersection of the two circles lies on $A D$. Let ω_{1} and ω_{2} intersect side $B C$ at E and F, respectively. Denote by X the intersection of $D F, A B$ and Y the intersection of $D E, A C$. Show that $X Y \| B C$.

5 Let $A=(0,0,0)$ in 3D space. Define the weight of a point as the sum of the absolute values of the coordinates. Call a point a primitive lattice point if all of its coordinates are integers whose gcd is 1 . Let square $A B C D$ be an unbalanced primitive integer square if it has integer side length and also, B and D are primitive lattice points with different weights. Prove that there are infinitely many unbalanced primitive integer squares such that the planes containing the squares are not parallel to each other.

6 Define the function $f: \mathbb{N} \cup\{0\} \rightarrow \mathbb{Q}$ as follows: $f(0)=0$ and

$$
f(3 n+k)=-\frac{3 f(n)}{2}+k
$$

for $k=0,1,2$. Show that f is one-to-one and determine the range of f.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

