## AoPS Community

## USA Team Selection Test 2005

www.artofproblemsolving.com/community/c4635
by N.T.TUAN, harazi, mikeynot, Fang-jh, rrusczyk

## Day 1

1 Let $n$ be an integer greater than 1. For a positive integer $m$, let $S_{m}=\{1,2, \ldots, m n\}$. Suppose that there exists a $2 n$-element set $T$ such that
(a) each element of $T$ is an $m$-element subset of $S_{m}$;
(b) each pair of elements of $T$ shares at most one common element; and
(c) each element of $S_{m}$ is contained in exactly two elements of $T$.

Determine the maximum possible value of $m$ in terms of $n$.
2 Let $A_{1} A_{2} A_{3}$ be an acute triangle, and let $O$ and $H$ be its circumcenter and orthocenter, respectively. For $1 \leq i \leq 3$, points $P_{i}$ and $Q_{i}$ lie on lines $O A_{i}$ and $A_{i+1} A_{i+2}$ (where $A_{i+3}=A_{i}$ ), respectively, such that $O P_{i} H Q_{i}$ is a parallelogram. Prove that

$$
\frac{O Q_{1}}{O P_{1}}+\frac{O Q_{2}}{O P_{2}}+\frac{O Q_{3}}{O P_{3}} \geq 3 .
$$

3 We choose random a unitary polynomial of degree $n$ and coefficients in the set $1,2, \ldots, n!$. Prove that the probability for this polynomial to be special is between 0.71 and 0.75 , where a polynomial $g$ is called special if for every $k>1$ in the sequence $f(1), f(2), f(3), \ldots$ there are infinitely many numbers relatively prime with $k$.

## Day 2

4 Consider the polynomials

$$
f(x)=\sum_{k=1}^{n} a_{k} x^{k} \quad \text { and } \quad g(x)=\sum_{k=1}^{n} \frac{a_{k}}{2^{k}-1} x^{k},
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ are real numbers and $n$ is a positive integer. Show that if 1 and $2^{n+1}$ are zeros of $g$ then $f$ has a positive zero less than $2^{n}$.
$5 \quad$ Find all finite sets $S$ of points in the plane with the following property: for any three distinct points $A, B$, and $C$ in $S$, there is a fourth point $D$ in $S$ such that $A, B, C$, and $D$ are the vertices of a parallelogram (in some order).

6 Let $A B C$ be an acute scalene triangle with $O$ as its circumcenter. Point $P$ lies inside triangle $A B C$ with $\angle P A B=\angle P B C$ and $\angle P A C=\angle P C B$. Point $Q$ lies on line $B C$ with $Q A=Q P$. Prove that $\angle A Q P=2 \angle O Q B$.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

