AoPS Community

USA Team Selection Test 2006

www.artofproblemsolving.com/community/c4636
by N.T.TUAN, rrusczyk

Day 1

1 A communications network consisting of some terminals is called a $[i] 3$-connector $[/ i]$ if among any three terminals, some two of them can directly communicate with each other. A communications network contains a windmill with n blades if there exist n pairs of terminals $\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\}, \ldots,\left\{x_{n}, y\right.$ such that each x_{i} can directly communicate with the corresponding y_{i} and there is a hub terminal that can directly communicate with each of the $2 n$ terminals $x_{1}, y_{1}, \ldots, x_{n}, y_{n}$. Determine the minimum value of $f(n)$, in terms of n, such that a 3 -connector with $f(n)$ terminals always contains a windmill with n blades.

2 In acute triangle $A B C$, segments $A D ; B E$, and $C F$ are its altitudes, and H is its orthocenter. Circle ω, centered at O, passes through A and H and intersects sides $A B$ and $A C$ again at Q and P (other than A), respectively. The circumcircle of triangle $O P Q$ is tangent to segment $B C$ at R. Prove that $\frac{C R}{B R}=\frac{E D}{F D}$.

3 Find the least real number k with the following property: if the real numbers x, y, and z are not all positive, then

$$
k\left(x^{2}-x+1\right)\left(y^{2}-y+1\right)\left(z^{2}-z+1\right) \geq(x y z)^{2}-x y z+1 .
$$

Day 2

4 Let n be a positive integer. Find, with proof, the least positive integer d_{n} which cannot be expressed in the form

$$
\sum_{i=1}^{n}(-1)^{a_{i}} 2^{b_{i}},
$$

where a_{i} and b_{i} are nonnegative integers for each i.
$5 \quad$ Let n be a given integer with n greater than 7 , and let \mathcal{P} be a convex polygon with n sides. Any set of $n-3$ diagonals of \mathcal{P} that do not intersect in the interior of the polygon determine a triangulation of \mathcal{P} into $n-2$ triangles. A triangle in the triangulation of \mathcal{P} is an interior triangle if all of its sides are diagonals of \mathcal{P}. Express, in terms of n, the number of triangulations of \mathcal{P} with exactly two interior triangles, in closed form.

6 Let $A B C$ be a triangle. Triangles $P A B$ and $Q A C$ are constructed outside of triangle $A B C$ such that $A P=A B$ and $A Q=A C$ and $\angle B A P=\angle C A Q$. Segments $B Q$ and $C P$ meet at R. Let O be the circumcenter of triangle $B C R$. Prove that $A O \perp P Q$.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

