AoPS Community

USA Team Selection Test 2007

www.artofproblemsolving.com/community/c4637
by N.T.TUAN, rrusczyk

Day 1

$1 \quad$ Circles ω_{1} and ω_{2} meet at P and Q. Segments $A C$ and $B D$ are chords of ω_{1} and ω_{2} respectively, such that segment $A B$ and ray $C D$ meet at P. Ray $B D$ and segment $A C$ meet at X. Point Y lies on ω_{1} such that $P Y \| B D$. Point Z lies on ω_{2} such that $P Z \| A C$. Prove that points Q, X, Y, Z are collinear.

2 Let n be a positive integer and let $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ be two nondecreasing sequences of real numbers such that

$$
a_{1}+\cdots+a_{i} \leq b_{1}+\cdots+b_{i} \text { for every } i=1, \ldots, n
$$

and

$$
a_{1}+\cdots+a_{n}=b_{1}+\cdots+b_{n} .
$$

Suppose that for every real number m, the number of pairs (i, j) with $a_{i}-a_{j}=m$ equals the numbers of pairs (k, ℓ) with $b_{k}-b_{\ell}=m$. Prove that $a_{i}=b_{i}$ for $i=1, \ldots, n$.

3 Let θ be an angle in the interval $(0, \pi / 2)$. Given that $\cos \theta$ is irrational, and that $\cos k \theta$ and $\cos [(k+$ $1) \theta$] are both rational for some positive integer k, show that $\theta=\pi / 6$.

Day 2

4 Determine whether or not there exist positive integers a and b such that a does not divide $b^{n}-n$ for all positive integers n.
$5 \quad$ Triangle $A B C$ is inscribed in circle ω. The tangent lines to ω at B and C meet at T. Point S lies on ray $B C$ such that $A S \perp A T$. Points B_{1} and C_{1} lie on ray $S T$ (with C_{1} in between B_{1} and S) such that $B_{1} T=B T=C_{1} T$. Prove that triangles $A B C$ and $A B_{1} C_{1}$ are similar to each other.

6 For a polynomial $P(x)$ with integer coefficients, $r(2 i-1)$ (for $i=1,2,3, \ldots, 512$) is the remainder obtained when $P(2 i-1)$ is divided by 1024 . The sequence

$$
(r(1), r(3), \ldots, r(1023))
$$

is called the remainder sequence of $P(x)$. A remainder sequence is called complete if it is a permutation of $(1,3,5, \ldots, 1023)$. Prove that there are no more than 2^{35} different complete remainder sequences.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

