

AoPS Community

2007 USA Team Selection Test

USA Team Selection Test 2007

www.artofproblemsolving.com/community/c4637 by N.T.TUAN, rrusczyk

Day	1
-----	---

- **1** Circles ω_1 and ω_2 meet at P and Q. Segments AC and BD are chords of ω_1 and ω_2 respectively, such that segment AB and ray CD meet at P. Ray BD and segment AC meet at X. Point Y lies on ω_1 such that $PY \parallel BD$. Point Z lies on ω_2 such that $PZ \parallel AC$. Prove that points Q, X, Y, Z are collinear.
- **2** Let *n* be a positive integer and let $a_1 \le a_2 \le \cdots \le a_n$ and $b_1 \le b_2 \le \cdots \le b_n$ be two nondecreasing sequences of real numbers such that

$$a_1 + \cdots + a_i \leq b_1 + \cdots + b_i$$
 for every $i = 1, \ldots, n$

and

$$a_1 + \dots + a_n = b_1 + \dots + b_n.$$

Suppose that for every real number m, the number of pairs (i, j) with $a_i - a_j = m$ equals the numbers of pairs (k, ℓ) with $b_k - b_\ell = m$. Prove that $a_i = b_i$ for i = 1, ..., n.

3 Let θ be an angle in the interval $(0, \pi/2)$. Given that $\cos \theta$ is irrational, and that $\cos k\theta$ and $\cos[(k+1)\theta]$ are both rational for some positive integer k, show that $\theta = \pi/6$.

Day	2
-----	---

- **4** Determine whether or not there exist positive integers a and b such that a does not divide $b^n n$ for all positive integers n.
- **5** Triangle ABC is inscribed in circle ω . The tangent lines to ω at B and C meet at T. Point S lies on ray BC such that $AS \perp AT$. Points B_1 and C_1 lie on ray ST (with C_1 in between B_1 and S) such that $B_1T = BT = C_1T$. Prove that triangles ABC and AB_1C_1 are similar to each other.
- **6** For a polynomial P(x) with integer coefficients, r(2i-1) (for i = 1, 2, 3, ..., 512) is the remainder obtained when P(2i 1) is divided by 1024. The sequence

$$(r(1), r(3), \ldots, r(1023))$$

is called the *remainder sequence* of P(x). A remainder sequence is called *complete* if it is a permutation of (1, 3, 5, ..., 1023). Prove that there are no more than 2^{35} different complete remainder sequences.

AoPS Community

2007 USA Team Selection Test

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

AoPS Online 🔯 AoPS Academy 🔯 AoPS and AoPS