AoPS Community

USA Team Selection Test 2009

www.artofproblemsolving.com/community/c4639
by MellowMelon, rrusczyk

Day 1

1 Let m and n be positive integers. Mr. Fat has a set S containing every rectangular tile with integer side lengths and area of a power of 2 . Mr. Fat also has a rectangle R with dimensions $2^{m} \times 2^{n}$ and a 1×1 square removed from one of the corners. Mr. Fat wants to choose $m+n$ rectangles from S, with respective areas $2^{0}, 2^{1}, \ldots, 2^{m+n-1}$, and then tile R with the chosen rectangles. Prove that this can be done in at most $(m+n)$! ways.

Palmer Mebane.

2 Let $A B C$ be an acute triangle. Point D lies on side $B C$. Let O_{B}, O_{C} be the circumcenters of triangles $A B D$ and $A C D$, respectively. Suppose that the points B, C, O_{B}, O_{C} lies on a circle centered at X. Let H be the orthocenter of triangle $A B C$. Prove that $\angle D A X=\angle D A H$.

Zuming Feng.

3 For each positive integer n, let $c(n)$ be the largest real number such that

$$
c(n) \leq\left|\frac{f(a)-f(b)}{a-b}\right|
$$

for all triples (f, a, b) such that
$-f$ is a polynomial of degree n taking integers to integers, and
$-a, b$ are integers with $f(a) \neq f(b)$.
Find $c(n)$.
Shaunak Kishore.

Day 2

4 Let $A B P, B C Q, C A R$ be three non-overlapping triangles erected outside of acute triangle $A B C$. Let M be the midpoint of segment $A P$. Given that $\angle P A B=\angle C Q B=45^{\circ}, \angle A B P=\angle Q B C=$ $75^{\circ}, \angle R A C=105^{\circ}$, and $R Q^{2}=6 C M^{2}$, compute $A C^{2} / A R^{2}$.

Zuming Feng.

$5 \quad$ Find all pairs of positive integers (m, n) such that $m n-1$ divides $\left(n^{2}-n+1\right)^{2}$.
Aaron Pixton.
$6 \quad$ Let $N>M>1$ be fixed integers. There are N people playing in a chess tournament; each pair of players plays each other once, with no draws. It turns out that for each sequence of $M+1$ distinct players $P_{0}, P_{1}, \ldots P_{M}$ such that P_{i-1} beat P_{i} for each $i=1, \ldots, M$, player P_{0} also beat P_{M}. Prove that the players can be numbered $1,2, \ldots, N$ in such a way that, whenever $a \geq b+M-1$, player a beat player b.

Gabriel Carroll.

Day 3

7 Find all triples (x, y, z) of real numbers that satisfy the system of equations

$$
\left\{\begin{array}{l}
x^{3}=3 x-12 y+50 \\
y^{3}=12 y+3 z-2 \\
z^{3}=27 z+27 x
\end{array}\right.
$$

Razvan Gelca.

8 Fix a prime number $p>5$. Let a, b, c be integers no two of which have their difference divisible by p. Let i, j, k be nonnegative integers such that $i+j+k$ is divisible by $p-1$. Suppose that for all integers x, the quantity

$$
(x-a)(x-b)(x-c)\left[(x-a)^{i}(x-b)^{j}(x-c)^{k}-1\right]
$$

is divisible by p. Prove that each of i, j, k must be divisible by $p-1$.
Kiran Kedlaya and Peter Shor.
9 Prove that for positive real numbers x, y, z,

$$
x^{3}\left(y^{2}+z^{2}\right)^{2}+y^{3}\left(z^{2}+x^{2}\right)^{2}+z^{3}\left(x^{2}+y^{2}\right)^{2} \geq x y z\left[x y(x+y)^{2}+y z(y+z)^{2}+z x(z+x)^{2}\right] .
$$

Zarathustra (Zeb) Brady.

- https://data.artof problemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

