AoPS Community

USA Team Selection Test 2010

www.artofproblemsolving.com/community/c4640
by MellowMelon, rrusczyk

Day 1

1 Let P be a polynomial with integer coefficients such that $P(0)=0$ and

$$
\operatorname{gcd}(P(0), P(1), P(2), \ldots)=1
$$

Show there are infinitely many n such that

$$
\operatorname{gcd}(P(n)-P(0), P(n+1)-P(1), P(n+2)-P(2), \ldots)=n .
$$

2 Let a, b, c be positive reals such that $a b c=1$. Show that

$$
\frac{1}{a^{5}(b+2 c)^{2}}+\frac{1}{b^{5}(c+2 a)^{2}}+\frac{1}{c^{5}(a+2 b)^{2}} \geq \frac{1}{3} .
$$

3 Let h_{a}, h_{b}, h_{c} be the lengths of the altitudes of a triangle $A B C$ from A, B, C respectively. Let P be any point inside the triangle. Show that

$$
\frac{P A}{h_{b}+h_{c}}+\frac{P B}{h_{a}+h_{c}}+\frac{P C}{h_{a}+h_{b}} \geq 1 .
$$

Day 2

$4 \quad$ Let $A B C$ be a triangle. Point M and N lie on sides $A C$ and $B C$ respectively such that $M N \| A B$. Points P and Q lie on sides $A B$ and $C B$ respectively such that $P Q \| A C$. The incircle of triangle $C M N$ touches segment $A C$ at E. The incircle of triangle $B P Q$ touches segment $A B$ at F. Line $E N$ and $A B$ meet at R, and lines $F Q$ and $A C$ meet at S. Given that $A E=A F$, prove that the incenter of triangle $A E F$ lies on the incircle of triangle $A R S$.

5 Define the sequence $a_{1}, a_{2}, a_{3}, \ldots$ by $a_{1}=1$ and, for $n>1$,

$$
a_{n}=a_{\lfloor n / 2\rfloor}+a_{\lfloor n / 3\rfloor}+\ldots+a_{\lfloor n / n\rfloor}+1 .
$$

Prove that there are infinitely many n such that $a_{n} \equiv n\left(\bmod 2^{2010}\right)$.
$6 \quad$ Let T be a finite set of positive integers greater than 1 . A subset S of T is called good if for every $t \in T$ there exists some $s \in S$ with $\operatorname{gcd}(s, t)>1$. Prove that the number of good subsets of T is odd.

Day 3

7 In triangle ABC , let P and Q be two interior points such that $\angle A B P=\angle Q B C$ and $\angle A C P=$ $\angle Q C B$. Point D lies on segment $B C$. Prove that $\angle A P B+\angle D P C=180^{\circ}$ if and only if $\angle A Q C+$ $\angle D Q B=180^{\circ}$.

8 Let m, n be positive integers with $m \geq n$, and let S be the set of all n-term sequences of positive integers $\left(a_{1}, a_{2}, \ldots a_{n}\right)$ such that $a_{1}+a_{2}+\cdots+a_{n}=m$. Show that

$$
\sum_{S} 1^{a_{1}} 2^{a_{2}} \cdots n^{a_{n}}=\binom{n}{n} n^{m}-\binom{n}{n-1}(n-1)^{m}+\cdots+(-1)^{n-2}\binom{n}{2} 2^{m}+(-1)^{n-1}\binom{n}{1}
$$

9 Determine whether or not there exists a positive integer k such that $p=6 k+1$ is a prime and

$$
\binom{3 k}{k} \equiv 1 \quad(\bmod p)
$$

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

