

AoPS Community

2013 USA Team Selection Test

USA Team Selection Test 2013

www.artofproblemsolving.com/community/c4643 by v_Enhance, lyukhson, rrusczyk

- December TST
- 1 A social club has 2k + 1 members, each of whom is fluent in the same k languages. Any pair of members always talk to each other in only one language. Suppose that there were no three members such that they use only one language among them. Let A be the number of three-member subsets such that the three distinct pairs among them use different languages. Find the maximum possible value of A.
- **2** Find all triples (x, y, z) of positive integers such that $x \le y \le z$ and

$$x^{3}(y^{3} + z^{3}) = 2012(xyz + 2).$$

- **3** Let ABC be a scalene triangle with $\angle BCA = 90^{\circ}$, and let D be the foot of the altitude from C. Let X be a point in the interior of the segment CD. Let K be the point on the segment AX such that BK = BC. Similarly, let L be the point on the segment BX such that AL = AC. The circumcircle of triangle DKL intersects segment AB at a second point T (other than D). Prove that $\angle ACT = \angle BCT$.
- **4** Let $f : \mathbb{N} \to \mathbb{N}$ be a function, and let f^m be f applied m times. Suppose that for every $n \in \mathbb{N}$ there exists a $k \in \mathbb{N}$ such that $f^{2k}(n) = n + k$, and let k_n be the smallest such k. Prove that the sequence k_1, k_2, \ldots is unbounded.

Proposed by Palmer Mebane, United States

- January TST
- **1** Two incongruent triangles *ABC* and *XYZ* are called a pair of *pals* if they satisfy the following conditions:

(a) the two triangles have the same area;

(b) let M and W be the respective midpoints of sides BC and YZ. The two sets of lengths $\{AB, AM, AC\}$ and $\{XY, XW, XZ\}$ are identical 3-element sets of pairwise relatively prime integers.

Determine if there are infinitely many pairs of triangles that are pals of each other.

2 Let *ABC* be an acute triangle. Circle ω_1 , with diameter *AC*, intersects side *BC* at *F* (other than *C*). Circle ω_2 , with diameter *BC*, intersects side *AC* at *E* (other than *C*). Ray *AF* intersects ω_2

AoPS Community

2013 USA Team Selection Test

at *K* and *M* with AK < AM. Ray *BE* intersects ω_1 at *L* and *N* with BL < BN. Prove that lines *AB*, *ML*, *NK* are concurrent.

3 In a table with *n* rows and 2n columns where *n* is a fixed positive integer, we write either zero or one into each cell so that each row has *n* zeros and *n* ones. For $1 \le k \le n$ and $1 \le i \le n$, we define $a_{k,i}$ so that the *i*th zero in the *k*th row is the $a_{k,i}^{th}$ column. Let \mathcal{F} be the set of such tables with $a_{1,i} \ge a_{2,i} \ge \cdots \ge a_{n,i}$ for every *i* with $1 \le i \le n$. We associate another $n \times 2n$ table f(C) from $C \in \mathcal{F}$ as follows: for the k^{th} row of f(C), we write *n* ones in the columns $a_{n,k} - k + 1, a_{n-1,k} - k + 2, \ldots, a_{1,k} - k + n$ (and we write zeros in the other cells in the row).

(a) Show that $f(C) \in \mathcal{F}$. (b) Show that f(f(f(f(f(C))))) = C for any $C \in \mathcal{F}$.

- **4** Determine if there exists a (three-variable) polynomial P(x, y, z) with integer coefficients satisfying the following property: a positive integer n is *not* a perfect square if and only if there is a triple (x, y, z) of positive integers such that P(x, y, z) = n.
- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

