AoPS Community

USA Team Selection Test 2013

www.artofproblemsolving.com/community/c4643
by v_Enhance, lyukhson, rrusczyk

- December TST

1 A social club has $2 k+1$ members, each of whom is fluent in the same k languages. Any pair of members always talk to each other in only one language. Suppose that there were no three members such that they use only one language among them. Let A be the number of threemember subsets such that the three distinct pairs among them use different languages. Find the maximum possible value of A.

2 Find all triples (x, y, z) of positive integers such that $x \leq y \leq z$ and

$$
x^{3}\left(y^{3}+z^{3}\right)=2012(x y z+2) .
$$

3 Let $A B C$ be a scalene triangle with $\angle B C A=90^{\circ}$, and let D be the foot of the altitude from C. Let X be a point in the interior of the segment $C D$. Let K be the point on the segment $A X$ such that $B K=B C$. Similarly, let L be the point on the segment $B X$ such that $A L=A C$. The circumcircle of triangle $D K L$ intersects segment $A B$ at a second point T (other than D). Prove that $\angle A C T=\angle B C T$.
$4 \quad$ Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function, and let f^{m} be f applied m times. Suppose that for every $n \in \mathbb{N}$ there exists a $k \in \mathbb{N}$ such that $f^{2 k}(n)=n+k$, and let k_{n} be the smallest such k. Prove that the sequence k_{1}, k_{2}, \ldots is unbounded.

Proposed by Palmer Mebane, United States

- January TST

1 Two incongruent triangles $A B C$ and $X Y Z$ are called a pair of pals if they satisfy the following conditions:
(a) the two triangles have the same area;
(b) let M and W be the respective midpoints of sides $B C$ and $Y Z$. The two sets of lengths $\{A B, A M, A C\}$ and $\{X Y, X W, X Z\}$ are identical 3-element sets of pairwise relatively prime integers.

Determine if there are infinitely many pairs of triangles that are pals of each other.
2 Let $A B C$ be an acute triangle. Circle ω_{1}, with diameter $A C$, intersects side $B C$ at F (other than C). Circle ω_{2}, with diameter $B C$, intersects side $A C$ at E (other than C). Ray $A F$ intersects ω_{2}
at K and M with $A K<A M$. Ray $B E$ intersects ω_{1} at L and N with $B L<B N$. Prove that lines $A B, M L, N K$ are concurrent.

3 In a table with n rows and $2 n$ columns where n is a fixed positive integer, we write either zero or one into each cell so that each row has n zeros and n ones. For $1 \leq k \leq n$ and $1 \leq i \leq n$, we define $a_{k, i}$ so that the $i^{\text {th }}$ zero in the $k^{\text {th }}$ row is the $a_{k, i}^{\text {th }}$ column. Let \mathcal{F} be the set of such tables with $a_{1, i} \geq a_{2, i} \geq \cdots \geq a_{n, i}$ for every i with $1 \leq i \leq n$. We associate another $n \times 2 n$ table $f(C)$ from $C \in \mathcal{F}$ as follows: for the $k^{\text {th }}$ row of $f(C)$, we write n ones in the columns $a_{n, k}-k+1, a_{n-1, k}-k+2, \ldots, a_{1, k}-k+n$ (and we write zeros in the other cells in the row).
(a) Show that $f(C) \in \mathcal{F}$.
(b) Show that $f(f(f(f(f(f(C))))))=C$ for any $C \in \mathcal{F}$.

4 Determine if there exists a (three-variable) polynomial $P(x, y, z)$ with integer coefficients satisfying the following property: a positive integer n is not a perfect square if and only if there is a triple (x, y, z) of positive integers such that $P(x, y, z)=n$.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

