AoPS Community

USA Team Selection Test 2014

www.artofproblemsolving.com/community/c4644
by math154, v_Enhance, rrusczyk

- December TST

1 Let $A B C$ be an acute triangle, and let X be a variable interior point on the minor arc $B C$ of its circumcircle. Let P and Q be the feet of the perpendiculars from X to lines $C A$ and $C B$, respectively. Let R be the intersection of line $P Q$ and the perpendicular from B to $A C$. Let ℓ be the line through P parallel to $X R$. Prove that as X varies along minor arc $B C$, the line ℓ always passes through a fixed point. (Specifically: prove that there is a point F, determined by triangle $A B C$, such that no matter where X is on arc $B C$, line ℓ passes through F.)
Robert Simson et al.
2 Let $a_{1}, a_{2}, a_{3}, \ldots$ be a sequence of integers, with the property that every consecutive group of a_{i} 's averages to a perfect square. More precisely, for every positive integers n and k, the quantity

$$
\frac{a_{n}+a_{n+1}+\cdots+a_{n+k-1}}{k}
$$

is always the square of an integer. Prove that the sequence must be constant (all a_{i} are equal to the same perfect square).

Evan O'Dorney and Victor Wang

3 Let n be an even positive integer, and let G be an n-vertex graph with exactly $\frac{n^{2}}{4}$ edges, where there are no loops or multiple edges (each unordered pair of distinct vertices is joined by either 0 or 1 edge). An unordered pair of distinct vertices $\{x, y\}$ is said to be amicable if they have a common neighbor (there is a vertex z such that $x z$ and $y z$ are both edges). Prove that G has at least $2\binom{n / 2}{2}$ pairs of vertices which are amicable.
Zoltán Füredi (suggested by Po-Shen Loh)

- January TST

1 Let n be a positive even integer, and let $c_{1}, c_{2}, \ldots, c_{n-1}$ be real numbers satisfying

$$
\sum_{i=1}^{n-1}\left|c_{i}-1\right|<1
$$

Prove that

$$
2 x^{n}-c_{n-1} x^{n-1}+c_{n-2} x^{n-2}-\cdots-c_{1} x^{1}+2
$$

has no real roots.

2 Let $A B C D$ be a cyclic quadrilateral, and let E, F, G, and H be the midpoints of $A B, B C, C D$, and $D A$ respectively. Let W, X, Y and Z be the orthocenters of triangles $A H E, B E F, C F G$ and $D G H$, respectively. Prove that the quadrilaterals $A B C D$ and $W X Y Z$ have the same area.

3 For a prime p, a subset S of residues modulo p is called a sum-free multiplicative subgroup of \mathbb{F}_{p} if \bullet there is a nonzero residue α modulo p such that $S=\left\{1, \alpha^{1}, \alpha^{2}, \ldots\right\}$ (all considered mod p), and • there are no $a, b, c \in S$ (not necessarily distinct) such that $a+b \equiv c(\bmod p)$.
Prove that for every integer N, there is a prime p and a sum-free multiplicative subgroup S of \mathbb{F}_{p} such that $|S| \geq N$.

Proposed by Noga Alon and Jean Bourgain

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

