AoPS Community

Flanders Junior Olympiad 2002

www.artofproblemsolving.com/community/c4668
by Peter

1 Prove that for all $a, b, c \in \mathbb{R}_{0}^{+}$we have

$$
\frac{a}{b c}+\frac{b}{a c}+\frac{c}{a b} \geq \frac{2}{a}+\frac{2}{b}-\frac{2}{c}
$$

and determine when equality occurs.
2 Prove that there are no perfect squares in the array below:

11	111	1111	\ldots
22	222	2222	\ldots
33	333	3333	\ldots
44	444	4444	\ldots
55	555	5555	\ldots
66	666	6666	\ldots
77	777	7777	\ldots
88	888	8888	\ldots
99	999	9999	\ldots

3 Is it possible to number the 8 vertices of a cube from 1 to 8 in such a way that the value of the sum on every edge is different?

4 Two congruent right-angled isosceles triangles (with baselength 1) slide on a line as on the picture. What is the maximal area of overlap?
http://www.mathlinks.ro/Forum/album_pic.php?pic_id=287

