AoPS Community

Spain Mathematical Olympiad 2007

www.artofproblemsolving.com/community/c467730
by OmicronGamma

- \quad Session 1

Problem 1 Let $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}$ be five positive numbers in the arithmetic progression with a difference d. Prove that $a_{2}^{3} \leq \frac{1}{10}\left(a_{0}^{3}+4 a_{1}^{3}+4 a_{3}^{3}+a_{4}^{3}\right)$.

Problem 2 Determine all the possible non-negative integer values that are able to satisfy the expression: $\frac{\left(m^{2}+m n+n^{2}\right)}{(m n-1)}$
if m and n are non-negative integers such that $m n \neq 1$.
Problem $3 O$ is the circumcenter of triangle $A B C$. The bisector from A intersects the opposite side in point P. Prove that the following is satisfied:

$$
A P^{2}+O A^{2}-O P^{2}=b c .
$$

- \quad Session 2

Problem 4 What are the positive integer numbers that we are able to obtain in 2007 distinct ways, when the sum is at least out of two positive consecutive integers? What is the smallest of all of them?
Example: the number 9 is written in exactly two such distinct ways: $9=4+59=2+3+4$.
Problem 5 Let $a \neq 1$ and be a real positive number and n be an integer greater than 1 . Demonstrate that $n^{2}<\frac{\left(a^{n}+a^{-n}-2\right)}{\left(a+a^{-1}-2\right)}$.

Problem 6 Given a halfcircle of diameter $A B=2 R$, consider a chord $C D$ of length c. Let E be the intersection of $A C$ with $B D$ and F the inersection of $A D$ with $B C$.
Prove that the segment $E F$ has a constant length and direction when varying the chord $C D$ about the halfcircle.

