1977 Polish MO Finals



## **AoPS Community**

## Finals 1977

www.artofproblemsolving.com/community/c4681 by Megus, ociretsih, Diogene, grobber

## Day 1

| 1     | Let $ABCD$ be a tetrahedron with $\angle BAD = 60^{\circ}$ , $\angle BAC = 40^{\circ}$ , $\angle ABD = 80^{\circ}$ , $\angle ABC = 70^{\circ}$ .<br>Prove that the lines $AB$ and $CD$ are perpendicular.                                                                                                                                                                                                          |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2     | Let $s \ge 3$ be a given integer. A sequence $K_n$ of circles and a sequence $W_n$ of convex <i>s</i> -gons satisfy:                                                                                                                                                                                                                                                                                               |
|       | $K_n \supset W_n \supset K_{n+1}$                                                                                                                                                                                                                                                                                                                                                                                  |
|       | for all $n = 1, 2,$<br>Prove that the sequence of the radii of the circles $K_n$ converges to zero.                                                                                                                                                                                                                                                                                                                |
| 3     | Consider the set $A = \{0, 1, 2,, 2^{2n} - 1\}$ . The function $f : A \to A$ is given by: $f(x_0 + 2x_1 + 2^{2x_2} + + 2^{2n-1}x_{2n-1}) = (1 - x_0) + 2x_1 + 2^2(1 - x_2) + 2^3x_3 + + 2^{2n-1}x_{2n-1}$<br>for every $0 - 1$ sequence $(x_0, x_1,, x_{2n-1})$ . Show that if $a_1, a_2,, a_9$ are consecutive terms of an arithmetic progression, then the sequence $f(a_1), f(a_2),, f(a_9)$ is not increasing. |
| Day 2 | 2                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1     | A function $h : \mathbb{R} \to \mathbb{R}$ is differentiable and satisfies $h(ax) = bh(x)$ for all $x$ , where $a$ and $b$ are given positive numbers and $0 \neq  a  \neq 1$ . Suppose that $h'(0) \neq 0$ and the function $h'$ is continuous at $x = 0$ . Prove that $a = b$ and that there is a real number $c$ such that $h(x) = cx$ for all $x$ .                                                            |
| 2     | Show that for every convex polygon there is a circle passing through three consecutive ver-<br>tices of the polygon and containing the entire polygon                                                                                                                                                                                                                                                              |
| 3     | Consider the polynomial $W(x) = (x - a)^k Q(x)$ , where $a \neq 0$ , $Q$ is a nonzero polynomial, and $k$ a natural number. Prove that $W$ has at least $k + 1$ nonzero coefficients.                                                                                                                                                                                                                              |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                    |

Art of Problem Solving is an ACS WASC Accredited School.