AoPS Community

Finals 1977

www.artofproblemsolving.com/community/c4681
by Megus, ociretsih, Diogene, grobber

Day 1

1 Let $A B C D$ be a tetrahedron with $\angle B A D=60^{\circ}, \angle B A C=40^{\circ}, \angle A B D=80^{\circ}, \angle A B C=70^{\circ}$. Prove that the lines $A B$ and $C D$ are perpendicular.

2 Let $s \geq 3$ be a given integer. A sequence K_{n} of circles and a sequence W_{n} of convex s-gons satisfy:

$$
K_{n} \supset W_{n} \supset K_{n+1}
$$

for all $n=1,2, \ldots$
Prove that the sequence of the radii of the circles K_{n} converges to zero.
3 Consider the set $A=\left\{0,1,2, \ldots, 2^{2 n}-1\right\}$. The function $f: A \rightarrow A$ is given by: $f\left(x_{0}+2 x_{1}+\right.$ $\left.2^{2} x_{2}+\ldots+2^{2 n-1} x_{2 n-1}\right)=\left(1-x_{0}\right)+2 x_{1}+2^{2}\left(1-x_{2}\right)+2^{3} x_{3}+\ldots+2^{2 n-1} x_{2 n-1}$ for every $0-1$ sequence ($x_{0}, x_{1}, \ldots, x_{2 n-1}$). Show that if $a_{1}, a_{2}, \ldots, a_{9}$ are consecutive terms of an arithmetic progression, then the sequence $f\left(a_{1}\right), f\left(a_{2}\right), \ldots, f\left(a_{9}\right)$ is not increasing.

Day 2

$1 \quad$ A function $h: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and satisfies $h(a x)=b h(x)$ for all x, where a and b are given positive numbers and $0 \neq|a| \neq 1$. Suppose that $h^{\prime}(0) \neq 0$ and the function h^{\prime} is continuous at $x=0$. Prove that $a=b$ and that there is a real number c such that $h(x)=c x$ for all x.

2 Show that for every convex polygon there is a circle passing through three consecutive vertices of the polygon and containing the entire polygon

3 Consider the polynomial $W(x)=(x-a)^{k} Q(x)$, where $a \neq 0, Q$ is a nonzero polynomial, and k a natural number. Prove that W has at least $k+1$ nonzero coefficients.

