Art of Problem Solving

AoPS Community

Finals 1988

www.artofproblemsolving.com/community/c4682
by Megus, Ravi B, grobber, enescu

Day 1

1 The real numbers $x_{1}, x_{2}, \ldots, x_{n}$ belong to the interval $(0,1)$ and satisfy $x_{1}+x_{2}+\ldots+x_{n}=m+r$, where m is an integer and $r \in[0,1)$. Show that $x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2} \leq m+r^{2}$.

2 For a permutation $P=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ of $(1,2, \ldots, n)$ define $X(P)$ as the number of j such that $p_{i}<p_{j}$ for every $i<j$. What is the expected value of $X(P)$ if each permutation is equally likely?
$3 \quad W$ is a polygon which has a center of symmetry S such that if P belongs to W, then so does P^{\prime}, where S is the midpoint of $P P^{\prime}$. Show that there is a parallelogram V containing W such that the midpoint of each side of V lies on the border of W.

Day 2

$1 d$ is a positive integer and $f:[0, d] \rightarrow \mathbb{R}$ is a continuous function with $f(0)=f(d)$. Show that there exists $x \in[0, d-1]$ such that $f(x)=f(x+1)$.

2 The sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by $a_{1}=a_{2}=a_{3}=1, a_{n+3}=a_{n+2} a_{n+1}+a_{n}$. Show that for any positive integer r we can find s such that a_{s} is a multiple of r.

3 Find the largest possible volume for a tetrahedron which lies inside a hemisphere of radius 1.

