

AoPS Community

Finals 1988

www.artofproblemsolving.com/community/c4682 by Megus, Ravi B, grobber, enescu

Day 1	
1	The real numbers $x_1, x_2,, x_n$ belong to the interval $(0, 1)$ and satisfy $x_1 + x_2 + + x_n = m + r$, where m is an integer and $r \in [0, 1)$. Show that $x_1^2 + x_2^2 + + x_n^2 \le m + r^2$.
2	For a permutation $P = (p_1, p_2,, p_n)$ of $(1, 2,, n)$ define $X(P)$ as the number of j such that $p_i < p_j$ for every $i < j$. What is the expected value of $X(P)$ if each permutation is equally likely?
3	W is a polygon which has a center of symmetry S such that if P belongs to W , then so does P' , where S is the midpoint of PP' . Show that there is a parallelogram V containing W such that the midpoint of each side of V lies on the border of W .
Day 2	
1	<i>d</i> is a positive integer and $f : [0, d] \to \mathbb{R}$ is a continuous function with $f(0) = f(d)$. Show that there exists $x \in [0, d-1]$ such that $f(x) = f(x+1)$.
2	The sequence $a_1, a_2, a_3,$ is defined by $a_1 = a_2 = a_3 = 1$, $a_{n+3} = a_{n+2}a_{n+1} + a_n$. Show that for any positive integer r we can find s such that a_s is a multiple of r .
3	Find the largest possible volume for a tetrahedron which lies inside a hemisphere of radius 1.

Act of Problem Solving is an ACS WASC Accredited School.